Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds
Abstract
:1. Introduction
2. Structure of HH Compounds and Typical Strategies of Enhancing ZT for HH
3. Nanostructuring Enhances ZT of HH Nanocomposites
3.1. Micro-Scale HH Matrix with Nanoinclusions
3.1.1. Ex-Situ Approach-Mechanical Mixing
3.1.2. In-Situ Approach-Nanoscale Precipitation
3.2. Nanoscale HH Matrix with Nanoinclusions
4. The Future and Challenge of Nanostructuring in HH Compounds
5. Conclusions and Outlook
Acknowledgements
References
- Slack, G.A. New Materials and Performance Limits for Thermoelectric Cooling; D. M. Rowe: Boca Raton, FL, USA, 1995; p. 701. [Google Scholar]
- Tritt, T.M. Overview of Various Strategies and Promising New Bulk Materials for Potential Thermoelectric Applications. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 3–14. [Google Scholar]
- Gordiakova, G.N.; Sinani, S.S. The thermoelectric properties of bismuth telluride with alloying additives. Sov. Phys. Tech. Phys. 1958, 3, 908–911. [Google Scholar]
- Wright, D.A. Thermoelectric properties of bismuth telluride and its alloys. Nature 1958, 181, 834–834. [Google Scholar] [CrossRef]
- Goldsmid, H.J. The electrical conductivity and thermoelectric power of bismuth telluride. Proc. Phys. Soc. 1958, 71, 633–646. [Google Scholar] [CrossRef]
- Steele, M.C.; Rosi, F.D. Thermal conductivity and thermoelectric power of germanium-silicon alloys. J. Appl. Phys. 1958, 29, 1517–1520. [Google Scholar] [CrossRef]
- Abrikoso, N.K.; Zemskov, V.S.; Iordanis, E.K.; Petrov, A.V.; Rozhdest, V.V. Thermoelectric properties of silicon-germanium-boron alloys. Sov. Phys. Semicond. 1969, 2, 1468. [Google Scholar]
- Rowe, D.M.; Bunce, R.W. Thermoelectric properties of heavily doped hot-pressed germanium-silicon alloys. J. Phys. D 1969, 2, 1497. [Google Scholar]
- Wyrick, R.; Levinstein, H. Thermoelectric voltage in lead telluride. Phys. Rev. 1950, 78, 304–305. [Google Scholar]
- Putley, E.H. Thermoelectric and galvanomagnetic effects in lead selenide and telluride. Proc. Phys. Soc. 1955, 68, 35–42. [Google Scholar]
- Kolomoets, N.V.; Stavitskaia, T.S.; Stilbans, L.S. An investigation of the thermoelectric properties of lead selenide and lead telluride. Sov. Phys. Tech. Phys. 1957, 2, 59–66. [Google Scholar]
- Gershtein, E.Z.; Stavitskaia, T.S.; Stilbans, L.S. A study of the thermoelectric properties of lead telluride. Sov. Phys. Tech. Phys. 1957, 2, 2302–2313. [Google Scholar]
- Wu, C. Analysis of waste-heat thermoelectric power generators. Appl. Therm. Eng. 1996, 16, 63–69. [Google Scholar]
- Rowe, D.M.; Min, G. Evaluation of thermoelectric modules for power generation. J. Power Sources 1998, 73, 193–198. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics, an environmentally-friendly source of electrical power. Renew. Energ. 1999, 16, 1251–1256. [Google Scholar] [CrossRef]
- Crane, D.T.; Jackson, G.S. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery. Energ. Convers. Manag. 2004, 45, 1565–1582. [Google Scholar] [CrossRef]
- Yang, J.H.; Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 2006, 31, 224–229. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Kyratsi, T. Thermoelectric Materials and Applications on the Recovery of Waste Heat Energy. In Proceedings of 7th International Conference of the Balkan Physical Union Vols 1 and 2, New York, NY, USA, 2009; Angelopoulos, A., Fildisis, T., Eds.; pp. 700–705.
- Niu, X.; Yu, J.; Wang, S. Experimental study on low-temperature waste heat thermoelectric generator. J. Power Sources 2009, 188, 621–626. [Google Scholar]
- Kyratsi, T. Thermoelectric materials and applications on the recovery of waste heat energy. AIP Conf. Proc. 2010, 1203, 700–705. [Google Scholar] [CrossRef]
- Telkes, M. Solar thermoelectric generators. J. Appl. Phys. 1954, 25, 765–777. [Google Scholar]
- Goldsmid, H.J.; Giutronich, J.E.; Kaila, M.M. Solar thermoelectric generation using bismuth telluride alloys. Sol. Energy 1980, 24, 435–440. [Google Scholar] [CrossRef]
- Omer, S.A.; Infield, D.G. Design optimization of thermoelectric devices for solar power generation. Sol. Energ. Mat. Sol. C. 1998, 53, 67–82. [Google Scholar] [CrossRef]
- Scherrer, H.; Vikhor, L.; Lenoir, B.; Dauscher, A.; Poinas, P. Solar thermolectric generator based on skutterudites. J. Power Sources 2003, 115, 141–148. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Tang, X.F.; Zhai, P.C.; Niino, M.; Endo, C. Recent development in nano and graded thermoelectric materials. Mater. Sci. Forum 2005, 492–493, 135–140. [Google Scholar] [CrossRef]
- Khattab, N.M.; El Shenawy, E.T. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energ. Convers. Manag. 2006, 47, 407–426. [Google Scholar]
- Tritt, T.M.; Boettner, H.; Chen, L. Thermoelectrics: Direct solar thermal energy conversion. MRS Bull. 2008, 33, 366–368. [Google Scholar]
- Baxter, J.; Bian, Z.; Chen, G.; Danielson, D.; Dresselhaus, M.S.; Fedorov, A.G.; Fisher, T.S.; Jones, C.W.; Maginn, E.; Kortshagen, U. Nanoscale design to enable the revolution in renewable energy. Energ. Environ. Sci. 2009, 2, 559–588. [Google Scholar] [CrossRef]
- Jovanovic, V.; Ghamaty, S.; Krommenhoek, D.; Bass, J.C. High Coefficient of Performance Quantum Well Thermoelectric Nano Cooler. In Proceedings of the ASME InterPACK Conference, New York, NY, USA, 2007; pp. 595–601.
- Tritt, T.M. Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Grosse, K.L.; Bae, M.-H.; Lian, F.; Pop, E.; King, W.P. Nanoscale joule heating, peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 2011, 6, 287–290. [Google Scholar] [CrossRef]
- Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 2009, 4, 235–238. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Alboni, P.N.; Xia, Y.; Tritt, T.M.; Poon, S.J. Thermoelectric Properties of Sb-Doping in the TiNiSn1−xSbx Half-Heusler System. In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 336–339.
- Cook, B.A.; Meisner, G.P.; Yang, J.; Uher, C. High Temperature Thermoelectric Properties of MNiSn (M = Zr,Hf). In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 64–67.
- Uher, C.; Yang, J.; Hu, S.; Morelli, D.T.; Meisner, G.P. Transport properties of pure and doped MNiSn (M = Zr, Hf). Phys. Rev. B 1999, 59, 8615–8621. [Google Scholar] [CrossRef]
- Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A. TiNiSn: A Gateway to the (1,1,1) Intermetallic Compounds. In Proceedings of Fifteenth International Conference on Thermoelectrics, Pasadena, CA, USA, 1996; pp. 122–127.
- Qiu, P.; Yang, J.; Huang, X.; Chen, X.; Chen, L. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Appl. Phys. Lett. 2010, 96, 152105. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, J.; Zhao, B.; Yu, C.; Zhu, T.; Zhao, X. Suspension melting preparation of Zr1−xTixNiSn0.975Sb0.025 half-Heusler alloy and its thermoelectric properties. Rare Metal Mat. Eng. 2009, 38, 1831–1834. [Google Scholar]
- Kimura, Y.; Ueno, H.; Kenjo, T.; Asami, C.; Mishima, Y. Phase Stability and Thermoelectric Properties of Half-Heusler (Ma, Mb)NiSn (Ma, Mb = Hf, Zr, Ti). In Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications; Palm, M., Bewlay, B.P., He, Y.H., Takeyama, M., Wiezorek, J.M.K., Eds.; Cambridge University Press: New York, NY, USA, 2009; Volume 1128, pp. 15–20. [Google Scholar]
- Romaka, V.A.; Fruchart, D.; Romaka, V.V.; Hlil, E.K.; Stadnyk, Y.V.; Gorelenko, Y.K.; Akselrud, L.G. Features of the structural, electrokinetic, and magnetic properties of the heavily doped ZrNiSn semiconductor: Dy acceptor impurity. Semiconductors 2009, 43, 7–13. [Google Scholar] [CrossRef]
- Katsuyama, S.; Matsuo, R.; Ito, M. Thermoelectric properties of half-Heusler alloys Zr1−xYxNiSn1−ySby. J. Alloy. Compd. 2007, 428, 262–267. [Google Scholar] [CrossRef]
- Muta, H.; Kanemitsu, T.; Kurosaki, K.; Yamanaka, S. Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds. Mater. Trans. 2006, 47, 1453–1457. [Google Scholar] [CrossRef]
- Muta, H.; Yamaguchi, T.; Kurosaki, K.; Yamanaka, S. Thermoelectric properties of ZrNiSn based half Heusler compounds. IEEE 2005, 339–342. [Google Scholar]
- Katsuyama, S.; Matsushima, H.; Ito, M. Effect of substitution for Ni by Co and/or Cu on the thermoelectric properties of half-Heusler ZrNiSn. J. Alloy. Compd. 2004, 385, 232–237. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, L.M.; Chen, L.D.; Goto, T.; Hirai, T. Synthesis and Sintering of ZrNiSn Thermoelectric Compounds. In Proceedings of 21st International Conference on Thermoelectrics, California, CA, USA, 2002; pp. 166–169.
- Shen, Q.; Chen, L.; Goto, T.; Hirai, T.; Yang, J.; Meisner, G.P.; Uher, C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett. 2001, 79, 4165–4167. [Google Scholar]
- Zhu, T.J.; Xiao, K.; Yu, C.; Shen, J.J.; Yang, S.H.; Zhou, A.J.; Zhao, X.B.; He, J. Effects of yttrium doping on the thermoelectric properties of Hf0.6Zr0.4NiSn0.98Sb0.02 half-Heusler alloys. J. Appl. Phys. 2010, 108, 044903. [Google Scholar] [CrossRef]
- Qiu, P.; Huang, X.; Chen, X.; Chen, L. Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds. J. Appl. Phys. 2009, 106, 103703. [Google Scholar] [CrossRef]
- Xie, W.; Jin, Q.; Tang, X. The preparation and thermoelectric properties of Ti0.5Zr0.25Hf0.25Co1−xNixSb half-Heusler compounds. J. Appl. Phys. 2008, 103, 043711. [Google Scholar] [CrossRef]
- Wu, T.; Jiang, W.; Li, X.; Zhou, Y.; Chen, L. Thermoelectric properties of p-type Fe-doped TiCoSb half-Heusler compounds. J. Appl. Phys. 2007, 102, 103705. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, L.; Feng, C.; Wang, D.; Li, J.-F. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb. J. Appl. Phys. 2007, 101, 113714. [Google Scholar]
- Xie, W.-J.; Tang, X.-F.; Zhang, Q.-J. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds. Chin. Phys. 2007, 16, 3549–3552. [Google Scholar]
- Stopa, T.; Tobola, J.; Kaprzyk, S. Residual conductivity and seebeck coefficient calculations in TiCo1−xCuxSb alloys. In Proceedings of 25th International Conference on Thermoelectrics, Vienna, Austria, 2006; p. 4.
- Zhou, M.; Chen, L.D.; Zhang, W.Q.; Feng, C.D. Disorder scattering effect on the high-temperature lattice thermal conductivity of TiCoSb-based half-Heusler compounds. J. Appl. Phys. 2005, 98, 013708. [Google Scholar] [CrossRef]
- Zhou, M.; Feng, C.D.; Chen, L.D.; Huang, X.Y. Effects of partial substitution of Co by Ni on the high-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds. J. Alloy. Compd. 2005, 391, 194–197. [Google Scholar] [CrossRef]
- Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamanaka, S. Thermoelectric properties of (Ti,Zr,Hf)CoSb type half-Heusler compounds. Mater. Trans. 2005, 46, 1481–1484. [Google Scholar]
- Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamasaka, S. Thermoelectric and thermophysical properties of TiCoSb,ZrCoSb,HfCoSb prepared by SPS. In Proceedings of 24th International Conference on Thermoelectrics, Clemson, SC, USA, 2005; pp. 347–350.
- Zhou, M.; Feng, C.D.; Chen, L.D.; Huang, X.Y. Effects of partial substitution of Co by Ni on the electrical transport properties of TiCoSb-based half-Heusler compounds. Rare Metal Mat. Eng. 2003, 32, 488–490. [Google Scholar]
- Xia, Y.; Ponnambalam, V.; Bhattacharya, S.; Pope, A.L.; Poon, S.J.; Tritt, T.M. Electrical transport properties of TiCoSb half-Heusler phases that exhibit high resistivity. J. Phys. Condens. Mat. 2001, 13, 77–89. [Google Scholar]
- Xia, Y.; Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Poon, S.J.; Tritt, T.M. Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases. J. Appl. Phys. 2000, 88, 1952–1955. [Google Scholar]
- Poon, S.J.; Tritt, T.M.; Xi, Y.; Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Littleton, R.T.; Browning, V.M. Bandgap Features and Thermoelectric Properties of Ti-Based Half-Heusler Alloys. In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 45–51.
- Tobola, J.; Pierre, J.; Kaprzyk, S.; Skolozdra, R.V.; Kouacou, M.A. Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration. J. Phys. Condens. Mat. 1998, 10, 1013–1032. [Google Scholar] [CrossRef]
- Kuentzler, R.; Clad, R.; Schmerber, G.; Dossmann, Y. Gap at the fermi level and magnetism in RMSn ternary compounds (R = Ti, Zr, Hf and M=Fe, Co, Ni). J. Magn. Magn. Mater. 1992, 104, 1976–1978. [Google Scholar] [CrossRef]
- Aliev, F.G. Gap at fermi level in some new d-electron and f-electron intermetallic compounds. Physica B 1991, 171, 199–205. [Google Scholar]
- Aliev, F.G.; Kozyrkov, V.V.; Moshchalkov, V.V.; Scolozdra, R.V.; Durczewski, K. Narrow-band in the intermetallic compounds TiNiSn, ZrNiSn, HfNiSn. Z. Phys. B 1990, 80, 353–357. [Google Scholar]
- Bhattacharya, S.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadani, N.; Tritt, T.M. Reductions in the Lattice Thermal Conductivity of Ball-Milled and Shock Compacted TiNiSn1−xSbx Half-Heusler Alloys. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 155–160. [Google Scholar]
- Tritt, T.M.; Bhattacharya, S.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadhani, N. Effects of Various Grain Structure and Sizes on the Thermal Conductivity of Ti-Based Half-Heusler Alloys. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 7–12. [Google Scholar]
- Xie, H.H.; Yu, C.; Zhu, T.J.; Fu, C.G.; Snyder, G.J.; Zhao, X.B. Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates. Appl. Phys. Lett. 2012, 100, 254104. [Google Scholar]
- Takas, N.J.; Sahoo, P.; Misra, D.; Zhao, H.; Henderson, N.L.; Stokes, K.; Poudeu, P.F.P. Effects of Ir substitution and processing conditions on thermoelectric performance of p-type Zr0.5Hf0.5Co1−xIrxSb0.99sn0.01 half-Heusler alloys. J. Electron. Mater. 2011, 40, 662–669. [Google Scholar] [CrossRef]
- Yaqub, R.; Sahoo, P.; Makongo, J.P.A.; Takas, N.; Poudeu, P.F.P.; Stokes, K.L. Investigation of the effect of NiO nanoparticles on the transport properties of Zr0.5Hf0.5Ni1−xPdxSn0.99Sb0.01 (x = 0 and 0.2). Sci. Adv. Mater. 2011, 3, 633–638. [Google Scholar] [CrossRef]
- Joshi, G.; Yan, X.; Wang, H.; Liu, W.; Chen, G.; Ren, Z. Enhancement in thermoelectric figure-of-merit of an n-type half-Heusler compound by the nanocomposite approach. Adv. Energy Mater. 2011, 1, 643–647. [Google Scholar]
- Yan, X.; Joshi, G.; Liu, W.; Lan, Y.; Wang, H.; Lee, S.; Simonson, J.W.; Poon, S.J.; Tritt, T.M.; Chen, G.; et al. Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett. 2011, 11, 556–560. [Google Scholar]
- Yu, C.; Zhu, T.J.; Xiao, K.; Shen, J.J.; Yang, S.H.; Zhao, X.B. Reduced grain size and improved thermoelectric properties of melt spun (Hf,Zr)NiSn half-Heusler alloys. J. Electron. Mater. 2010, 39, 2008–2012. [Google Scholar]
- Zhou, M.; Li, J.F.; Guo, P.J.; Takuji, K. Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity. J. Phys. D 2010, 43, 415403. [Google Scholar]
- Yu, C.; Zhu, T.-J.; Xiao, K.; Jin, J.; Shen, J.-J.; Yang, S.-H.; Zhao, X.-B. Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning. J. Inorg. Mater. 2010, 25, 569–572. [Google Scholar]
- Huang, X.Y.; Xu, Z.; Chen, L.D. The thermoelectric performance of ZrNiSn-ZrO2 composites. Solid State Commun. 2004, 130, 181–185. [Google Scholar] [CrossRef]
- Huang, X.Y.; Xu, Z.; Chen, L.D.; Tang, X.F. Effect of γ-Al2O3 content on the thermoelectric performance of ZrNiSn/γ-Al2O3 composites. Key Eng. Mater. 2003, 249, 79–82. [Google Scholar] [CrossRef]
- Xie, W.J.; He, J.; Zhu, S.; Su, X.L.; Wang, S.Y.; Holgate, T.; Graff, J.W.; Ponnambalam, V.; Poon, S.J.; Tang, X.F.; Zhang, Q.J.; Tritt, T,M. Simultaneously optimizing the independent thermoelectric properties in (Ti,Zr,Hf)(Co,Ni)Sb alloy by in situ forming InSb nanoinclusions. Acta Mater. 2010, 58, 4705–4713. [Google Scholar]
- Makongo, J.P.A.; Misra, D.K.; Zhou, X.; Pant, A.; Shabetai, M.R.; Su, X.; Uher, C.; Stokes, K.L.; Poudeu, P.F.P. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J. Am. Chem. Soc. 2011, 133, 18843–18852. [Google Scholar]
- Jeitschk, W. Transition metal stannides with MgAgAs and MnCu2Al-type structure. Metall. Trans. 1970, 1, 3159. [Google Scholar]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Ch. 2011, 39, 1–50. [Google Scholar]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar]
- Yu, C.; Zhu, T.-J.; Shi, R.-Z.; Zhang, Y.; Zhao, X.-B.; He, J. High-performance half-heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 2009, 57, 2757–2764. [Google Scholar] [CrossRef]
- Populoh, S.; Aguirre, M.H.; Brunko, O.C.; Galazka, K.; Lu, Y.; Weidenkaff, A. High figure of merit in (Ti,Zr,Hf)NiSn half-Heusler alloys. Scripta Mater. 2012, 66, 1073–1076. [Google Scholar] [CrossRef]
- Culp, S.R.; Simonson, J.W.; Poon, S.J.; Ponnambalam, V.; Edwards, J.; Tritt, T.M. (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials. Appl. Phys. Lett. 2008, 93, 022105. [Google Scholar]
- Kawano, K.; Kurosaki, K.; Muta, H.; Yamanaka, S. Substitution effect on the thermoelectric properties of p-type half-Heusler compounds: ErNi1−xPdxSb. J. Appl. Phys. 2008, 104, 013714. [Google Scholar]
- Kimura, Y.; Tanoguchi, T.; Kita, T. Vacancy site occupation by Co and Ir in half-Heusler ZrNiSn and conversion of the thermoelectric properties from n-type to p-type. Acta Mater. 2010, 58, 4354–4361. [Google Scholar] [CrossRef]
- Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamanaka, S. High-thermoelectric figure of merit realized in p-type half-Heusler compounds: ZrCoSnxSb1−x. J. Appl. Phys. 2007, 46, 673–675. [Google Scholar]
- Culp, S.; Poon, S.J.; Hickman, N.; Tritt, T.M.; Blumm, J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl. Phys. Lett. 2006, 88, 042106. [Google Scholar]
- Sakurada, S.; Shutoh, N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 2005, 86, 2105. [Google Scholar]
- Dresselhaus, M.S.; Chen, G.; Ren, Z.F.; Dresselhaus, G.; Henry, A.; Fleurial, J.P. New composite thermoelectric materials for energy harvesting applications. JOM 2009, 61, 86–90. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Ren, Z.F.; McEnaney, K.; Dresselhaus, G.; Fleurial, J.P. The Promise of Nanocomposite Thermoelectric Materials. In Materials and Devices for Thermal-to-Electric Energy Conversion; Yang, J., Nolas, G.S., Koumoto, K., Grin, Y., Eds.; Cambridge University Press: New York, USA, 2009; Volume 1166, pp. 29–41. [Google Scholar]
- Dresselhaus, M.S.; Chen, G.; Ren, Z.; Fleurial, J.-P.; Gogna, P.; Tang, M.Y.; Vashaee, D.; Lee, H.; Wang, X.; Joshi, G. Nanocomposites to Enhance ZT in Thermoelectrics. In Thermoelectric Power Generation; Hogan, T.P., Yang, J., Funahashi, R., Tritt, T.M., Eds.; Cambridge University Press: New York, NY, USA, 2008; Volume 1044, pp. 29–41. [Google Scholar]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.-P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Yang, R.G.; Chen, G.; Dresselhaus, M.S. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B 2005, 72, 125411. [Google Scholar] [CrossRef]
- Yang, R.G.; Chen, G. Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 2004, 69, 195316. [Google Scholar] [CrossRef]
- Harris, T.; Lee, H.; Wang, D.Z.; Huang, J.Y.; Ren, Z.F.; Klotz, B.; Dowding, R.; Dresselhaus, M.S.; Chen, G. Thermal Conductivity Reduction of SiGe Nanocomposites. In Thermoelectric Materials 2003-Research and Applications; Nolas, G.S., Yang, J., Hogan, T.P., Johnson, D.C., Eds.; Cambridge University Press: New York, NY, USA, 2004; Volume 793, pp. 169–174. [Google Scholar]
- Kanatzidis, M.G. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Chen, R.; Delgado, R.D.; Liang, W.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167. [Google Scholar]
- Pichanusakorn, P.; Bandaru, P. Nanostructured thermoelectrics. Mat. Sci. Eng. R 2010, 67, 19–63. [Google Scholar]
- Heremans, J.P.; Thrush, C.M.; Morelli, D.T. Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 2004, 70, 115334. [Google Scholar]
- Kishimoto, K.; Tsukamoto, M.; Koyanagi, T. Temperature dependence of the seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by RF sputtering. J. Appl. Phys. 2002, 92, 5331–5339. [Google Scholar]
- Nishio, Y.; Hirano, T. Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. J. Appl. Phys. 1997, 36, 170–174. [Google Scholar]
- Faleev, S.V.; Leonard, F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 2008, 77, 214304. [Google Scholar]
- Makongo, J.P.A.; Misra, D.K.; Salvador, J.R.; Takas, N.J.; Wang, G.; Shabetai, M.R.; Pant, A.; Paudel, P.; Uher, C.; Stokes, K.L.; et al. Thermal and electronic charge transport in bulk nanostructured Zr0.25Hf0.75NiSn composites with full-Heusler inclusions. J. Solid State Chem. 2011, 184, 2948–2960. [Google Scholar] [CrossRef]
- Misra, D.K.; Makongo, J.P.A.; Sahoo, P.; Shabetai, M.R.; Paudel, P.; Stokes, K.L.; Poudeu, P.F.P. Microstructure and thermoelectric properties of mechanically alloyed Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01/WO3 half-heusler composites. Sci. Adv. Mater. 2011, 3, 607–614. [Google Scholar] [CrossRef]
- Chen, L.D.; Huang, X.Y.; Zhou, M.; Shi, X.; Zhang, W.B. The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions. J. Appl. Phys. 2006, 99, 064305. [Google Scholar]
- Huang, X.Y.; Chen, L.D.; Shi, X.; Zhou, M.; Xu, Z. Thermoelectric performances of ZrNiSn/C-60 composite. Key Eng. Mater. 2005, 280–283, 385–388. [Google Scholar] [CrossRef]
- Poon, S.J.; Wu, D.; Zhu, S.; Xie, W.; Tritt, T.M.; Thomas, P.; Venkatasubramanian, R. Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials. J. Mater. Res. 2011, 26, 2795–2802. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Tritt, T.M.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadhani, N. Grain structure effects on the lattice thermal conductivity of Ti-based half-heusler alloys. Appl. Phys. Lett. 2002, 81, 43–45. [Google Scholar]
- Xie, H.H.; Mi, J.L.; Hu, L.P.; Lock, N.; Chirstensen, M.; Fu, C.G.; Iversen, B.B.; Zhao, X.B.; Zhu, T.J. Interrelation between atomic switching disorder and thermoelectric properties of zrnisn half-Heusler compounds. Crystengcomm 2012, 14, 4467–4471. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, T.; Xiao, K.; Shen, J.; Zhao, X. Microstructure and thermoelectric properties of (Zr,Hf)NiSn-based half-Heusler alloys by melt spinning and spark plasma sintering. Funct. Mater. Lett. 2010, 3, 227–231. [Google Scholar]
- Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 2012, 12, 2077–2082. [Google Scholar]
- Zebarjadi, M.; Joshi, G.; Zhu, G.; Yu, B.; Minnich, A.; Lan, Y.; Wang, X.; Dresselhaus, M.; Ren, Z.; Chen, G. Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 2011, 11, 2225–2230. [Google Scholar]
- Xiong, Z.; Xi, L.; Ding, J.; Chen, X.; Huang, X.; Gu, H.; Chen, L.; Zhang, W. Thermoelectric nanocomposite from the metastable void filling in caged skutterudite. J. Mater. Res. 2011, 26, 1848–1856. [Google Scholar] [CrossRef]
- Xiong, Z.; Chen, X.; Huang, X.; Bai, S.; Chen, L. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 2010, 58, 3995–4002. [Google Scholar] [CrossRef]
- Eilertsen, J.; Rouvimov, S.; Subramanian, M.A. Rattler-seeded insb nanoinclusions from metastable indium-filled In0.1Co4Sb12 skutterudites for high-performance thermoelectrics. Acta Mater. 2012, 60, 2178–2185. [Google Scholar] [CrossRef]
- Eilertsen, J.; Berthelot, R.; Sleight, A.W.; Subramanian, M.A. Structure and transport behavior of in-filled cobalt rhodium antimonide skutterudites. J. Solid State Chem. 2012, 190, 238–245. [Google Scholar] [CrossRef]
- Chai, Y.W.; Kimura, Y. Nanosized precipitates in half-Heusler TiNiSn alloy. Appl. Phys. Lett. 2012, 100, 033114. [Google Scholar] [CrossRef]
- Liu, W.; Tang, X.; Li, H.; Yin, K.; Sharp, J.; Zhou, X.; Uher, C. Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1−ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration. J. Mater. Chem. 2012, 22, 13653–13661. [Google Scholar]
- Chen, Z.; Sakamoto, J.; Morelli, D.; Xiaoyuan, Z.; Guoyu, W.; Uher, C. Thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. J. Appl. Phys. 2011, 109, 06372. [Google Scholar]
- Zhang, S.N.; Zhu, T.J.; Yang, S.H.; Yu, C.; Zhao, X.B. Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates. J Alloy. Compd. 2010, 499, 215–220. [Google Scholar] [CrossRef]
- He, J.Q.; Girard, S.N.; Kanatzidis, M.G.; Dravid, V.P. Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials. Adv. Funct. Mater. 2010, 20, 764–772. [Google Scholar] [CrossRef]
- Ke, X.; Chen, C.; Yang, J.; Wu, L.; Zhou, J.; Li, Q.; Zhu, Y.; Kent, P.R.C. Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. Phys. Rev. Lett. 2009, 103, 145502. [Google Scholar] [CrossRef]
- Xie, W.; He, J.; Kang, H.J.; Tang, X.; Zhu, S.; Laver, M.; Wang, S.; Copley, J.R.D.; Brown, C.M.; Zhang, Q.; et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Lett. 2010, 10, 3283–3289. [Google Scholar] [CrossRef]
- Xie, W.; Tang, X.; Yan, Y.; Zhang, Q.; Tritt, T.M. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 2009, 94, 102111. [Google Scholar]
- Xie, W.; Tang, X.; Yan, Y.; Zhang, Q.; Tritt, T.M. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 2009, 105, 113713. [Google Scholar] [CrossRef]
- Li, H.; Tang, X.; Su, X.; Zhang, Q.; Uher, C. Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. J. Phys. D 2009, 42, 145409. [Google Scholar] [CrossRef]
- Li, H.; Tang, X.; Su, X.; Zhang, Q. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 2008, 92, 202114. [Google Scholar] [CrossRef]
- Tang, X.; Xie, W.; Li, H.; Zhao, W.; Zhang, Q.; Niino, M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 2007, 90, 012102. [Google Scholar]
- Lan, Y.; Minnich, A.J.; Chen, G.; Ren, Z. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 2010, 20, 357–376. [Google Scholar]
- Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R.W.; Cuff, D.C.; Tang, M.Y.; Dresselhaus, M.S.; et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670–4674. [Google Scholar] [CrossRef]
- Ma, Y.; Hao, Q.; Poudel, B.; Lan, Y.; Yu, B.; Wang, D.; Chen, G.; Ren, Z. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 2008, 8, 2580–2584. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638. [Google Scholar]
- Sharp, J.W.; Poon, S.J.; Goldsmid, H.J. Boundary scattering and the thermoelectric figure of merit. Phys. Status Solidi A 2001, 187, 507–516. [Google Scholar] [CrossRef]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal-conductivity of disordered crystals. Phys. Rev. B 1992, 46, 6131–6140. [Google Scholar] [CrossRef]
- Yu, C.; Xie, H.H.; Fu, C.G.; Zhu, T.J.; Zhao, X.B. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. J. Mater. Res. 2012, 27, 2457–2465. [Google Scholar] [CrossRef]
- Liu, W.S.; Yan, X.; Chen, G.; Ren, Z. F. Recent advances in thermoelectric nanocomposites. Nano Energy 2012, 1, 42–56. [Google Scholar]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557. [Google Scholar]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar]
- Simonson, J.W.; Wu, D.; Xie, W.J.; Tritt, T.M.; Poon, S.J. Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys. Rev. B 2011, 83, 235211. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xie, W.; Weidenkaff, A.; Tang, X.; Zhang, Q.; Poon, J.; Tritt, T.M. Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials 2012, 2, 379-412. https://doi.org/10.3390/nano2040379
Xie W, Weidenkaff A, Tang X, Zhang Q, Poon J, Tritt TM. Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials. 2012; 2(4):379-412. https://doi.org/10.3390/nano2040379
Chicago/Turabian StyleXie, Wenjie, Anke Weidenkaff, Xinfeng Tang, Qingjie Zhang, Joseph Poon, and Terry M. Tritt. 2012. "Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds" Nanomaterials 2, no. 4: 379-412. https://doi.org/10.3390/nano2040379
APA StyleXie, W., Weidenkaff, A., Tang, X., Zhang, Q., Poon, J., & Tritt, T. M. (2012). Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials, 2(4), 379-412. https://doi.org/10.3390/nano2040379