Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphologies of Electrospun Nanoporous CNF-PtNP Hybrids
2.2. Structural Characterization of Nanoporous CNF-PtNP Hybrids
2.3. Non-Enzymatic Electrochemical Detection of H2O2
3. Experimental Section
3.1. Reagents and Materials
3.2. Preparation of Nanoporous CNFs
3.3. Preparation of Nanoporous CNF-PtNP Hybrids
3.4. Preparation of CNF-PtNP Modified GCE
3.5. Characterization Techniques
3.6. Electrochemical Experiments
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, P.P.; Zhao, X.N.; Ji, Y.C.; Ouyang, Z.F.; Wen, X.; Li, J.F.; Wei, G.; Su, Z.Q. Electrospinning graphene quantum dots into nanofibrous polymer membrane for dual-purpose fluorescent and electrochemical biosensors. J. Mater. Chem. B 2015, 3, 2487–2496. [Google Scholar] [CrossRef]
- Ding, J.W.; Zhu, S.Y.; Zhu, T.; Sun, W.; Li, Q.; Wei, G.; Su, Z.Q. Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv. 2015, 5, 22935–22942. [Google Scholar] [CrossRef]
- Zhang, M.F.; Li, Y.; Su, Z.Q.; Wei, G. Recent advances in the synthesis and applications of graphene-polymer nanocomposites. Polym. Chem. 2015, 6, 6107–6124. [Google Scholar] [CrossRef]
- Fang, H.; Pan, Y.; Shan, W.; Guo, M.; Nie, Z.; Huang, Y.; Yao, S. Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3O4/self-reduced graphene nanocomposites. Anal. Methods 2014, 6, 6073–6081. [Google Scholar] [CrossRef]
- Lee, K.T.; Liu, D.M.; Liang, Y.Y.; Matsushita, N.; Ikoma, T.; Lu, S.Y. Porous fluorine-doped tin oxide as a promising substrate for electrochemical biosensors-demonstration in hydrogen peroxide sensing. J. Mater. Chem. B 2014, 2, 7779–7784. [Google Scholar] [CrossRef]
- Ding, J.W.; Sun, W.; Wei, G.; Su, Z.Q. Cuprous oxide microspheres on graphene nanosheet: An enhanced material for non-enzymatic electrochemical detection of H2O2 and glucose. RSC Adv. 2015, 5, 35338–35345. [Google Scholar] [CrossRef]
- Eren, S.; Üzer, A.; Can, Z.; Kapudan, T.; Erçağ, E.; Apak, R. Determination of peroxide-based explosives with copper (II)-neocuproine assay combined with a molecular spectroscopic sensor. Analyst 2010, 135, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Lebiga, E.; Fernandez, R.E.; Beskok, A. Confined chemiluminescence detection of nanomolar levels of H2O2 in a paper-plastic disposable microfluidic device using a smartphone. Analyst 2015, 140, 5006–5011. [Google Scholar] [CrossRef] [PubMed]
- Katsounaros, I.; Schneider, W.B.; Meier, J.C.; Benedikt, U.; Biedermann, P.U.; Auer, A.A.; Mayrhofer, K.J.J. Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys. 2012, 14, 7384–7391. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.J.; Di, W.H.; Liu, Z.H.; Zheng, K.Z.; Qin, W.P. Luminescent CePO4: Tb colloids for H2O2 and glucose sensing. Analyst 2014, 139, 4547–4555. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.F.; He, X.P.; Wang, L.L.; Gu, A.X.; Huang, Y.; Fang, B.; Geng, B.Y.; Zhang, X.J. Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 2013, 180, 161–186. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhao, X.J.; Li, J.F.; Fan, Y.Q.; Kuang, X.; Su, Z.Q.; Wei, G. Electrostatic assembly of peptide nanofiber-biomimetic silver nanowires onto graphene for electrochemical sensors. ACS Macro. Lett. 2014, 3, 529–533. [Google Scholar] [CrossRef]
- Ding, J.W.; Zhang, K.; Xu, W.; Su, Z.Q. Self-assembly of gold nanoparticles on gold core-induced polypyrrole nanohybrids for electrochemical sensor of dopamine. Nano 2015. [Google Scholar] [CrossRef]
- Shironita, S.; Sakai, T.; Umeda, M. Nafion thickness dependence of H2O2 yield during O2 reduction at Nafion/Pt microelectrode studied by scanning electrochemical microscopy. Electrochim. Acta 2013, 113, 773–778. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Li, P.; Dong, J.; Ai, S. Nonenzymatic sensing of methyl parathion based on graphene/gadolinium Prussian Blue analogue nanocomposite modified glassy carbon electrode. Anal. Methods 2014, 6, 2157–2162. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013, 7, 3540–3546. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.W.; Zhang, K.; Wei, G.; Su, Z.Q. Fabrication of polypyrrole nanoplates decorated with silver and gold nanoparticles for sensor applications. RSC Adv. 2015, 5, 69745–69752. [Google Scholar] [CrossRef]
- Ouyang, Z.F.; Li, J.F.; Wang, J.H.; Li, Q.; Ni, T.Y.; Zhang, X.Y.; Wang, H.X.; Li, Q.; Su, Z.Q.; Wei, G. Fabrication, characterization and sensor application of electrospun polyurethane nanofibers filled with carbon nanotubes and silver nanoparticles. J. Mater. Chem. B 2013, 1, 2415–2424. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, Y.; Steckbeck, S.; Su, Z.Q.; Li, Z. Biomimetic graphene-FePt nanohybrids with high solubility, ferromagnetism, fluorescence, and enhanced electrocatalytic activity. J. Mater. Chem. 2012, 22, 17190–17195. [Google Scholar] [CrossRef]
- Zhang, P.P.; Huang, Y.; Lu, X.; Zhang, S.Y.; Li, J.F.; Su, Z.Q.; Wei, G. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and raman detection applications. Langmuir 2014, 30, 8980–8989. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, X.P.; Wen, C.J.; Xie, Y.Z.; Miao, L.F.; Chen, S.H.; Li, H.B.; Li, P.; Song, Y.H. One-step synthesis of Pt-NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. J. Mater. Chem. A 2015, 3, 608–616. [Google Scholar] [CrossRef]
- Fratoddi, I.; Macagnano, A.; Battocchio, C.; Zampetti, E.; Venditti, I.; Russo, M.V.; Bearzotti, A. Platinum nanoparticles on electrospun titania nanofibers as hydrogen sensing materials working at room temperature. Nanoscale 2014, 6, 9177–9184. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, X.J.; Zhang, P.P.; Ning, J.; Li, J.F.; Su, Z.Q.; Wei, G. A facile fabrication of large-scale reduced graphene oxide–silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. J. Mater. Chem. C 2015, 3, 4126–4133. [Google Scholar] [CrossRef]
- Zhao, R.P.; Liu, Y.; Liu, C.; Xu, G.R.; Chen, Y.; Tang, Y.W.; Lu, T.H. Pd@Pt core-shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 20855–20860. [Google Scholar] [CrossRef]
- Zhang, P.P.; Zhao, X.N.; Zhang, X.; Lai, Y.; Wang, X.Y.; Li, J.F.; Su, Z.Q.; Wei, G. Electrospun doping of carbon nanotubes and platinum nanoparticles into β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS Appl. Mater. Interfaces 2014, 6, 7563–7571. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.Q.; Ding, J.W.; Wei, G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor application. RSC Adv. 2014, 4, 52598–52610. [Google Scholar] [CrossRef]
- Cao, L.; Su, D.F.; Su, Z.Q.; Chen, X.N. Fabrication of multi-walled carbon nanotube/polypropylene conductive fibrous membranes by melt electrospinning. Ind. Eng. Chem. Res. 2014, 53, 2308–2317. [Google Scholar] [CrossRef]
- Su, Z.Q.; Li, J.F.; Ouyang, Z.F.; Matthias, A.; Wei, G.; Jandt, K.D. Biomimetic 3D hydroxyapatite architectures with interconnected nanopores based on electrospun biaxially orientated PCL nanofibers. RSC Adv. 2014, 4, 14833–14839. [Google Scholar] [CrossRef]
- Cao, L.; Dong, M.; Zhang, A.Y.; Liu, Y.; Yang, W.M.; Su, Z.Q.; Chen, X.N. Morphologies and crystal structures of styrene–acrylonitrile/isotactic polypropylene ultrafine fibers fabricated by melt electrospinning. Polym. Eng. Sci. 2013, 53, 2674–2682. [Google Scholar] [CrossRef]
- Sahay, R.; Kumar, P.S.; Sridhar, R.; Sundaramurthy, J.; Venugopal, J.; Mhaisalkar, S.G.; Ramakrishna, S. Electrospun composite nanofibers and their multifaceted applications. J. Mater. Chem. 2012, 22, 12953–12971. [Google Scholar] [CrossRef]
- Cao, L.; Su, D.F.; Su, Z.Q.; Chen, X.N. Morphology, crystallization behavior and tensile property of beta-nucleated isotactic polypropylene fibrous membranes prepared by melt electrospinning. Chin. J. Polym. Sci. 2014, 32, 1167–1175. [Google Scholar] [CrossRef]
- Zhang, P.P.; Wang, H.X.; Zhang, X.Y.; Xu, W.; Li, Q.; Wei, G.; Su, Z.Q. Graphene film doped with silver nanoparticles: Self-assembly formation, structural characterizations, antibacterial ability, and biocompatibility. Biomater. Sci. 2015, 3, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Mercante, L.A.; Pavinatto, A.; Iwaki, L.E.O.; Scagion, V.P.; Zucolotto, V.; Oliveira, O.N., Jr.; Mattoso, L.H.C.; Correa, D.S. Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl. Mater. Interfaces 2015, 7, 4784–4790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.P.; Zhang, X.Y.; Zhang, S.Y.; Liu, X.; Li, Q.; Su, Z.Q.; Wei, G. One-pot green synthesis, characterizations, and biosensor application of self-assembled reduced grapheme oxide/gold nanoparticle hybrid membranes. J. Mater. Chem. B 2013, 1, 6525–6531. [Google Scholar] [CrossRef]
- Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 2013, 1, 7290–7305. [Google Scholar] [CrossRef]
- Pinto, S.C.; Rodrigues, A.R.; Saraiva, J.A.; Lopes-da-Silva, J.A. Catalytic activity of trypsin entrapped in electrospun poly (ϵ-caprolactone) nanofibers. Enzyme Microb. Technol. 2015, 79–80, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhou, T.; Sun, G.; Li, Z.; Yang, W.; Jia, J.; Yang, G. Ultrasensitive electrospun nickel-doped carbon nanofibers electrode for sensing paracetamol and glucose. Electrochim. Acta 2015, 152, 31–37. [Google Scholar] [CrossRef]
- Su, Z.Q.; Li, J.F.; Li, Q.; Ni, T.Y.; Wei, G. Chain conformation, crystallization behavior, electrical and mechanical properties of electrospun polymer-carbon nanotube hybrid nanofibers with different orientations. Carbon 2012, 50, 5605–5617. [Google Scholar] [CrossRef]
- Jia, X.L.; Tang, T.H.; Cheng, D.; Guo, L.J.; Zhang, C.H.; Cai, Q.; Yang, X.P. Growth mechanism of bioglass nanoparticles in polyacrylonitrile-based carbon nanofibers. RSC Adv. 2014, 4, 64299–64309. [Google Scholar] [CrossRef]
- Shi, Z.; Chong, C.; Wang, J.; Wang, C.; Yu, X. Electrospun pitch/polyacrylonitrile composite carbon nanofibers as high performance anodes for lithium-ion batteries. Mater. Lett. 2015, 159, 341–344. [Google Scholar] [CrossRef]
- Song, K.L.; Wu, Q.L.; Zhang, Z.; Ren, S.X.; Lei, T.Z.; Negulescu, I.I.; Zhang, Q.G. Porous carbon nanofibers from electrospun biomass tar/polyacrylonitrile/silver hybrids as antimicrobial materials. ACS Appl. Mater. Interfaces 2015, 7, 15108–15116. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Fan, X.; Liu, J.; Yan, C. Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery. J. Power Sources 2015, 281, 1–6. [Google Scholar] [CrossRef]
- Nemati, M.; Voordouw, G. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme Microb. Technol. 2003, 33, 635–642. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, C.H.; Yoon, H.; Youm, J.S.; Jung, Y.C.; Bunker, C.E.; Kim, Y.A.; Yang, K.S. Rationally engineered surface properties of carbon nanofibers for the enhanced supercapacitive performance of binary metal oxide nanosheets. J. Mater. Chem. A 2015, 3, 19867–19872. [Google Scholar] [CrossRef]
- Li, D.W.; Pang, Z.Y.; Chen, X.D.; Luo, L.; Cai, Y.B.; Wei, Q.F. A catechol biosensor based on electrospun carbon nanofibers. Beilstein J. Nanotechnol. 2014, 5, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Zhao, S.; Gong, M.; Cui, C.H.; He, D.; Liang, H.W.; Wu, L.; Yu, S.H. Ultrathin PtPdTe Nanowires as Superior Catalysts for Methanol Electrooxidation. Angew. Chem. Int. Ed. 2013, 52, 7472–7476. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.H.; Mai, Z.B.; Zou, X.Y.; Cai, P.X.; Mo, J.Y. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid. Talanta 2008, 74, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Pan, C.; Wang, L.P.; Dong, Q.; Yu, C.; Zhao, Z.B.; Qiu, J.S. Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochim. Acta 2012, 69, 65–70. [Google Scholar] [CrossRef]
- Nia, P.M.; Lorestani, F.; Meng, W.P.; Alias, Y. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxidenano composites. Appl. Surf. Sci. 2015, 332, 648–656. [Google Scholar]
- Zhang, L.; Shi, Z.; Lang, Q.H.; Pan, J. Electrochemical synthesis of belt-like polyaniline network on p-phenylenediamine functionalized glassy carbon electrode and its use for the direct electrochemistry of horse heart cytochrome c. Electrochim. Acta 2010, 55, 641–647. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, M.; Zhang, X.; Xie, G.; Su, Z.; Wei, G. Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2. Nanomaterials 2015, 5, 1891-1905. https://doi.org/10.3390/nano5041891
Li Y, Zhang M, Zhang X, Xie G, Su Z, Wei G. Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2. Nanomaterials. 2015; 5(4):1891-1905. https://doi.org/10.3390/nano5041891
Chicago/Turabian StyleLi, Yang, Mingfa Zhang, Xiaopeng Zhang, Guocheng Xie, Zhiqiang Su, and Gang Wei. 2015. "Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2" Nanomaterials 5, no. 4: 1891-1905. https://doi.org/10.3390/nano5041891
APA StyleLi, Y., Zhang, M., Zhang, X., Xie, G., Su, Z., & Wei, G. (2015). Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2. Nanomaterials, 5(4), 1891-1905. https://doi.org/10.3390/nano5041891