Electric Field-Responsive Mesoporous Suspensions: A Review
Abstract
:1. Introduction
2. Fabrication of Electro-Responsive Mesoporous Materials
3. Characterization
3.1. Electron Microscopy
3.2. X-Ray Diffraction
3.3. BET Analysis
4. Electrorheological Characteristics
4.1. Flow Curve Test
4.2. Oscillatory Analysis
5. Dielectric Characteristics
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Jochum, F.D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Huang, W.M.; Zhao, Y.; Ding, Z.; Tang, C.; Zhang, J. Mechanisms of the shape memory effect in polymeric materials. Polymers 2013, 5, 1169–1202. [Google Scholar] [CrossRef]
- Murthy, N.; Campbell, J.; Fausto, N.; Hoffman, A.S.; Stayton, P.S. Bioinspired pH-Responsive Polymers for the Intracellular Delivery of Biomolecular Drugs. Bioconj. Chem. 2003, 14, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Park, B.J.; Choi, H.J. Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology. Chem. Commun. 2010, 46, 5596–5598. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, D.J.; Zukoski, C.F. Studies on the steady-shear behavior of electrorheological suspensions. Langmuir 1990, 6, 15–24. [Google Scholar] [CrossRef]
- Hao, T. Electrorheological fluids. Adv. Mater. 2001, 13, 1847–1857. [Google Scholar] [CrossRef]
- Wen, W.J.; Huang, X.X.; Sheng, P. Electrorheological fluids: Structures and mechanisms. Soft Matter 2008, 4, 200–210. [Google Scholar] [CrossRef]
- Liu, Y.D.; Choi, H.J. Electrorheological fluids: Smart soft matter and characteristics. Soft Matter 2012, 8, 11961–11978. [Google Scholar] [CrossRef]
- Cheng, Q.; Pavlinek, V.; He, Y.; Li, C.; Saha, P. Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions. Colloid Polym. Sci. 2009, 287, 435–441. [Google Scholar] [CrossRef]
- Lee, Y.B. Behavior Analysis of Controllable Electrorheology Fluid Plain Journal Bearings. J. Dyn. Sys. Meas. Control 2015, 137. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Zhang, X.R.; Niu, X.D.; Nishioka, K. Investigation of Impulse Response of an ER Fluid Viscous Damper. J. Intell. Mater. Syst. Struct. 2010, 21, 423–435. [Google Scholar] [CrossRef]
- Choi, S.B.; Lee, D.Y. Rotational Motion Control of a Washing Machine Using Electrorheological Clutches and Brakes. Proc. Inst. Mech. Eng. Part C 2005, 219, 627–637. [Google Scholar]
- Niu, X.; Liu, L.; Wen, W.; Sheng, P. Microfluidic Manipulation in Lab-Chips Using electrorheological Fluid. J. Intell. Mater. Syst. Struct. 2007, 18, 1187–1190. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, X.; Wen, W. Manipulation of microfluidic droplets by electrorheological fluid. Electrophoresis 2009, 30, 3116–3123. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, M.; Li, J.; Gong, X.; Wen, W. Logic control of microfluidics with smart Colloid. Lab Chip 2010, 10, 2869–2874. [Google Scholar] [CrossRef] [PubMed]
- Kuriyagawa, T.; Saeki, M.; Syoji, K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts. Precis. Eng. 2002, 26, 370–380. [Google Scholar] [CrossRef]
- Liu, Y.D.; Lee, B.M.; Park, T.S.; Kim, J.E.; Choi, H.J.; Booh, S.W. Optically transparent electrorheological fluid with urea-modified silica nanoparticles and its haptic display application. J. Colloid Interface Sci. 2013, 15, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Davidson, R.; Taylor, P. Touch sensitive electrorheological fluid based tactile display. Smart Mater. Struct. 2005, 14, 1563–1568. [Google Scholar] [CrossRef]
- Erol, O.; del Mar Ramos-Tejada, M.; Unal, H.I.; Delgado, A.V. Effect of surface properties on the electrorheological response of hematite/silicone oil dispersions. J. Colloid Interface Sci. 2013, 392, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Otsubo, Y.; Sekine, M.; Katayama, S. Effect of Surface Modification of Colloidal Silica on the Electrorheology of Suspensions. J. Colloid Interface Sci. 1990, 146, 395–404. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, J.W.; Jang, W.H.; Choi, H.J.; Jhon, M.S. Electrorheological characteristics of phosphate cellulose-based suspensions. Polymer 2001, 42, 5005–5012. [Google Scholar] [CrossRef]
- Sung, J.H.; Park, D.P.; Park, B.J.; Choi, H.J.; Jhon, M.S. Phosphorylation of Potato Starch and Its Electrorheological Suspension. Biomacromolecules 2005, 6, 2182–2188. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.D.; Klingenberg, D.J. Two Roles of Nonionic Surfactants on the Electrorheological Response. J. Colloid Interface Sci. 1996, 183, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Yethiraj, A.; Blaaderen, A.V. Monodisperse Colloidal Suspensions of Silica and PMMA Spheres as Model Electrorheological Fluids: A Real-Space Study of Structure Formation. Int. J. Mod. Phys. B 2002, 16, 2328–2333. [Google Scholar] [CrossRef]
- Choi, H.J.; Lee, Y.H.; Kim, C.A.; Jhon, M.S. Microencapsulated polyaniline particles for electrorheological materials. J. Mater. Sci. Lett. 2000, 19, 533–535. [Google Scholar] [CrossRef]
- Wei, Z.X.; Wan, M.X. Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Adv. Mater. 2002, 14, 1314–1317. [Google Scholar] [CrossRef]
- Gozdalik, A.; Wycislik, H.; Plocharski, J. Electrorheological effect in suspensions of polyaniline. Synth. Met. 2000, 109, 147–150. [Google Scholar] [CrossRef]
- Kwon, S.H.; Liu, Y.D.; Choi, H.J. Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields. J. Colloid Interface Sci. 2015, 440, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Unal, H.I.; Sari, B. Synthesis, characterization and electrorheological properties of poly(o-toluidine)/Zn conducting composites. J. Appl. Polym. Sci. 2007, 103, 1058–1065. [Google Scholar] [CrossRef]
- Sedlačík, M.; Mrlík, M.; Pavlínek, V.; Sáha, P.; Quadrat, O. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym. Sci. 2012, 290, 41–48. [Google Scholar] [CrossRef]
- Fang, F.F.; Liu, Y.D.; Choi, H.J. Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid Polym. Sci. 2013, 291, 1781–1786. [Google Scholar] [CrossRef]
- Krzton-Maziopa, A.; Wycislik, H.; Plocharski, J. Study of electrorheological properties of poly(p-phenylene) dispersions. J. Rheol. 2005, 49, 1177–1192. [Google Scholar] [CrossRef]
- Kunanuruksapong, R.; Sirivat, A. Poly(p-phenylene) and acrylic elastomer blendsfor electroactive application. Mater. Sci. Eng. A 2007, 454, 453–460. [Google Scholar] [CrossRef]
- Rozlivkova, Z.; Trchova, M.; Exnerova, M.; Stejskal, J. The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synth. Met. 2011, 161, 1122–1129. [Google Scholar] [CrossRef]
- Plachy, T.; Sedlačík, M.; Pavlinek, V.; Moravkova, Z.; Hajna, M.; Stejskal, J. An effect of carbonization on the electrorheology of poly(p-phenylenediamine). Carbon 2013, 63, 187–195. [Google Scholar] [CrossRef]
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2419. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.J.; Wirnsberger, G.; Stucky, G.D. Mesoporous and Mesostructured Materials for Optical Applications. Chem. Mater. 2001, 13, 3140–3150. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Inagaki, S.; Fukushima, Y.; Kuroda, K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc. Chem. Commun. 1993, 680–682. [Google Scholar] [CrossRef]
- Wu, C.N.; Tsai, T.S.; Liao, C.N.; Chao, K.J. Controlling pore size distributions of MCM-41 by direct synthesis. Microporous Mater. 1996, 7, 173–185. [Google Scholar] [CrossRef]
- Neimark, A.V.; Ravikovitch, P.I.; Grun, M.; Schuth, F.; Unger, K.K. Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption. J. Colloid Interface Sci. 1998, 207, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, S.K.; Ryoo, R. Synthesis of MCM-48 single crystals. Chem. Commum. 1998, 2, 259–260. [Google Scholar] [CrossRef]
- Dubois, M.; Gulik-Krzywicki, T.; Cabane, B. Growth of Silica Polymers in a Lamellar Mesophase. Langmuir 1993, 9, 673–680. [Google Scholar] [CrossRef]
- Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R.S.; Stucky, G.D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 1993, 261, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- Moller, K.; Bein, T. Inclusion Chemistry in Periodic Mesoporous Hosts. Chem. Mater. 1998, 10, 2950–2963. [Google Scholar] [CrossRef]
- Choi, H.J.; Cho, M.S.; Kang, K.K.; Ahn, W.S. Electrorheological properties of a suspension of a mesoporous molecular sieve (MCM-41). Microporous Mesoporous Mater. 2000, 39, 19–24. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6021–6036. [Google Scholar] [CrossRef]
- Jordan, M.; Schwendt, A.; Hill, D.A.; Burton, S.; Makris, N. Zeolite-based electrorheological fluids: Testing, modeling and instrumental artifacts. J. Rheol. 1997, 41, 75–91. [Google Scholar] [CrossRef]
- Qiu, Z.Y.; Liu, L.W.; Wang, Z.W.; Zhou, L.W. Rheological and Electrical Properties of NaY Zeolite Electrorheological Fluid. Int. J. Mod. Phys. B 2001, 15, 610–617. [Google Scholar] [CrossRef]
- Tian, Y.; Meng, Y.; Wen, S. ER Fluid based on zeolite and silicone oil with high strength. Mater. Lett. 2001, 50, 120–123. [Google Scholar] [CrossRef]
- Ryoo, R.; Ko, C.H.; Howe, R.F. Imaging the Distribution of Framework Aluminum in Mesoporous Molecular Sieve MCM-41. Chem. Mater. 1997, 9, 1607–1613. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, S.; Dong, Y.; Hu, Y. Electrorheological behavior of copper phthalocyanine-doped MCM-41 suspensions. Colloids Surf. A 2003, 220, 131–138. [Google Scholar] [CrossRef]
- Honma, I.; Zhou, H.S. Synthesis of Self-Assembled Photosensitive Molecules in Mesostructured Materials. Chem. Mater. 1998, 10, 103–108. [Google Scholar] [CrossRef]
- Cheng, Q.; Pavlinek, V.; He, Y.; Lengalova, A.; Li, C.; Saha, P. Structural and electrorheological properties of mesoporous silica modified with triethanolamine. Colloids Surf. A 2008, 318, 169–174. [Google Scholar] [CrossRef]
- Cho, M.S.; Choi, H.J.; Ahn, W.S. Enhanced Electrorheology of Conducting Polyaniline Confined in MCM-41 Channels. Langmuir 2004, 20, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.; Cho, M.S.; Hong, C.H.; Choi, H.J.; Yoon, S.S.; Ahn, W.S. Preparation and electrorheological property of conducting copolyaniline/MCM-41 nanocomposites. Stud. Surf. Sci. Catal. 2005, 156, 517–522. [Google Scholar]
- Fang, F.F.; Choi, H.J.; Ahn, W.S. Electroactive response of mesoporous silica and its nanocomposites with conducting polymers. Compos. Sci. Technol. 2009, 69, 2088–2092. [Google Scholar] [CrossRef]
- Fang, F.F.; Choi, H.J.; Ahn, W.S. Electrorheology of a mesoporous silica having conducting polypyrrole inside expanded pores. Microporous Mesoporous Mater. 2010, 130, 338–343. [Google Scholar] [CrossRef]
- Fang, F.F.; Cho, M.S.; Choi, H.J.; Yoon, S.S.; Ahn, W.S. Electrorheological characteristics of conducting polypyrrole/swollen MCM-41 nanocomposite. J. Ind. Eng. Chem. 2008, 14, 18–21. [Google Scholar] [CrossRef]
- Lindlar, B.; Kogelbauer, A.; Kooyman, P.J.; Prins, R. Synthesis of large pore silica with a narrow pore size distribution. Microporous Mesoporous Mater. 2001, 44–45, 89–94. [Google Scholar] [CrossRef]
- Cho, M.S.; Choi, H.J.; Kim, K.Y.; Ahn, H.S. Synthesis and Characterization of Polyaniline/Mesoporous SBA-15 Nanocomposite. Macromol. Rapid Commun. 2002, 23, 713–716. [Google Scholar] [CrossRef]
- Sasidharan, M.; Mal, N.K.; Bhaumik, A. In-situ polymerization of grafted aniline in the channels of mesoporous silica SBA-15. J. Mater. Chem. 2007, 17, 278–283. [Google Scholar] [CrossRef]
- Cho, M.S.; Choi, H.J.; Chin, I.J.; Ahn, W.S. Electrorheological characterization of zeolite suspensions. Microporous Mesoporous Mater. 1999, 32, 233–239. [Google Scholar] [CrossRef]
- Ryu, J.C.; Kim, J.W.; Choi, H.J.; Choi, S.B.; Kim, J.H.; Jhon, M.S. Liquid crystal added electrorheological fluid. J. Mater. Sci. Lett. 2003, 22, 807–809. [Google Scholar] [CrossRef]
- Yin, J.; Chang, R.; Kai, Y.; Zhao, X. Highly stable and AC electric field-activated electrorheological fluid based on mesoporous silica-coated graphene nanosheets. Soft Matter 2013, 9, 3910–3914. [Google Scholar] [CrossRef]
- Yoon, C.M.; Lee, S.; Hong, S.H.; Jang, J.S. Fabrication of density-controlled graphene oxide-coated mesoporous silica spheres and their electrorheological activity. J. Colloid Interface Sci. 2015, 438, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Li, Q.; Cui, H.; Zhang, Y.; Zhai, J. Adsorption of aqueous Hg (II) by a novelpoly(aniline-co-o-aminophenol)/mesoporoussilica SBA-15 composite. Polym. Adv. Technol. 2011, 22, 2231–2236. [Google Scholar] [CrossRef]
- Javadian, H.; Ghaemy, M.; Taghavi, M. Adsorption kinetics, isotherm, and thermodynamics of Hg2+ to polyaniline/hexagonal mesoporous silica nanocompositein water/wastewater. J. Mater. Sci. 2014, 49, 232–242. [Google Scholar] [CrossRef]
- Mehdinia, A.; Aziz-Zanjani, M.O.; MaryamAhmadifar, M.; Jabbari, A. Design and synthesis of molecularly imprinted polypyrrole basedon nanoreactor SBA-15 for recognition of ascorbic acid. Biosens. Bioelectron. 2013, 39, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cheng, G.; Katsov, K.; Sides, S.W.; Wang, J.; Tang, J.; Fredrickson, G.H.; Moskovits, M.; Stucky, G.D. Composite mesostructures bynano-confinement. Nat. Mater. 2004, 3, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; McKay, G.; Yeung, K.L. Selective Adsorbents from Ordered Mesoporous Silica. Langmuir 2003, 19, 3019–3024. [Google Scholar] [CrossRef]
- Block, H.; Kelly, J.P. Electro-rheology. J. Phys. D 1988, 21, 1661–1677. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, X. Electrorheology of nanofiber suspensions. Nanoscale Res. Lett. 2011, 6, 256–272. [Google Scholar] [CrossRef] [PubMed]
- Parmar, K.P.S.; Meheust, Y.; Schjelderupsen, B.; Fossum, J.O. Electrorheological Suspensions of Laponite in Oil: Rheometry Studies. Langmuir 2008, 24, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Au, P.I.; Foo, B.; Leong, Y.K.; Zhang, W.L.; Choi, H.J. Rheological analysis of graphene oxide coated anisotropic PMMA microsphere based electrorheological fluid from Couette flow geometry. J. Ind. Eng. Chem. 2015, 21, 172–177. [Google Scholar] [CrossRef]
- Yin, J.B.; Zhao, X.P. Giant electrorheological activity of high surface area mesoporous cerium-doped TiO2 templated by block copolymer. Chem. Phys. Lett. 2004, 398, 393–399. [Google Scholar] [CrossRef]
- Cheng, Q.; Pavlinek, V.; Lengalova, A.; Li, C.; Belza, T.; Saha, P. Electrorheological properties of new mesoporous material with conducting polypyrrole in mesoporous silica. Microporous Mesoporous Mater. 2006, 94, 193–199. [Google Scholar] [CrossRef]
- Cho, M.S.; Choi, H.J.; Jhon, M.S. Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 2005, 46, 11484–11488. [Google Scholar] [CrossRef]
- James, D.F.; Blakey, B.C. Comparison of the rheologies of laterite and goethite suspensions. Korea-Aust. Rheol. J. 2004, 16, 109–115. [Google Scholar]
- Liu, Y.D.; Fang, F.F.; Choi, H.J. Silica nanoparticle decorated polyaniline nanofiber and its electrorheological response. Soft Matter 2011, 7, 2782–2789. [Google Scholar] [CrossRef]
- Meheust, Y.; Parmar, K.P.S.; Schjelderupsen, B.; Fossum, J.O. The electrorheology of suspensions of Na-fluorohectorite clay in silicone oil. J. Rheol. 2011, 55, 809–833. [Google Scholar] [CrossRef]
- Cho, M.S.; Cho, Y.H.; Choi, H.J.; Jhon, M.S. Synthesis and Electrorheological Characteristics of Polyaniline-Coated Poly(methyl methacrylate) Microsphere: Size Effect. Langmuir 2003, 19, 5875–5881. [Google Scholar] [CrossRef]
- Seo, Y.P.; Seo, Y. Modeling and Analysis of Electrorheological Suspensions in Shear Flow. Langmuir 2013, 28, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Mohtaschemi, M.; Puisto, A.; Illa, X.; Alava, M.J. Rheology dynamics of aggregating colloidal suspensions. Soft Matter 2014, 10, 2971–2981. [Google Scholar] [CrossRef] [PubMed]
- Volkova, O.; Cutillas, S.; Bossis, G. Shear Banded Flows and Nematic-to-Isotropic Transition in ER and MR Fluids. Phys. Rev. Lett. 1999, 82, 233–236. [Google Scholar] [CrossRef]
- Von Pfeil, K.; Graham, M.D.; Klingenberg, D.J. Pattern Formation in Flowing Electrorheological Fluids. Phys. Rev. Lett. 2002, 88. [Google Scholar] [CrossRef] [PubMed]
- Orellana, C.S.; He, J.; Jaeger, H.M. Electrorheological response of dense strontium titanyl oxalate suspensions. Soft Matter 2011, 7, 8023–8029. [Google Scholar] [CrossRef]
- Li, C.; Huang, J.; Tang, Q.; Huang, J.; Zhang, J.; Zhou, L. Internal microstructures in shearing giant electrorheological fluids. Soft Matter 2012, 8, 5250–5255. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, Y.D. Electorheological properties of polypyrrole and its composite ER fluids. J. Ind. Eng. Chem. 2007, 13, 879–894. [Google Scholar]
- Kim, J.H.; Fang, F.F.; Lee, K.H.; Choi, H.J. Electrorheology of conducting polyaniline-BaTiO3 composite. Korea-Aust. Rheol. J. 2006, 18, 103–107. [Google Scholar]
- Atten, P.; Foulc, J.N.; Felici, N. A conduction model of the electrorheological effect. Int. J. Mod. Phys. B 1994, 8, 2731–2746. [Google Scholar] [CrossRef]
- Kilingenberg, D.J.; van Swol, F.; Zukoski, C.F. The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit. J. Chem. Phys. 1991, 94, 6170–6178. [Google Scholar] [CrossRef]
- Choi, H.J.; Cho, M.S.; Kim, J.W.; Kim, C.A.; Jhon, M.S. A yield stress scaling function for electrorheological fluids. Appl. Phys. Lett. 2001, 78, 3806–3808. [Google Scholar] [CrossRef]
- Seo, Y. A new yield stress scaling function for electrorheological fluids. J. Non-Newton. Fluid Mech. 2011, 166, 241–243. [Google Scholar] [CrossRef]
- Fang, F.F.; Choi, H.J.; Seo, Y. Sequential Coating of Magnetic Carbonyliron Particles with Polystyrene and Multiwalled Carbon Nanotubes and Its Effect on Their Magnetorheology. ACS Appl. Mater. Interfaces 2010, 2, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jiang, J.; Meng, Y.; Wen, S. A shear thickening phenomenon in magnetic field controlled-dipolar suspensions. Appl. Phys. Lett. 2010, 97. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Yin, J.; Xia, X.; Wang, X.; Zhao, X. The electrorheological effect and dielectric properties of suspensions containing polyaniline@titania nanocable-like particles. Soft Matter 2011, 7, 10978–10986. [Google Scholar] [CrossRef]
- Di, K.; Zhu, Y.; Yang, X.; Li, C. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions. J. Colloid Interface Sci. 2006, 294, 499–503. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.H.; Piao, S.H.; Choi, H.J. Electric Field-Responsive Mesoporous Suspensions: A Review. Nanomaterials 2015, 5, 2249-2267. https://doi.org/10.3390/nano5042249
Kwon SH, Piao SH, Choi HJ. Electric Field-Responsive Mesoporous Suspensions: A Review. Nanomaterials. 2015; 5(4):2249-2267. https://doi.org/10.3390/nano5042249
Chicago/Turabian StyleKwon, Seung Hyuk, Shang Hao Piao, and Hyoung Jin Choi. 2015. "Electric Field-Responsive Mesoporous Suspensions: A Review" Nanomaterials 5, no. 4: 2249-2267. https://doi.org/10.3390/nano5042249
APA StyleKwon, S. H., Piao, S. H., & Choi, H. J. (2015). Electric Field-Responsive Mesoporous Suspensions: A Review. Nanomaterials, 5(4), 2249-2267. https://doi.org/10.3390/nano5042249