Nanoparticles for Catalysis
Conflicts of Interest
References
- Palomo, J.M.; Filice, M. Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts. Nanomaterials 2016, 6, 84. [Google Scholar] [CrossRef]
- Shah, N.; Basu, P.; Prakash, P.; Donck, S.; Gravel, E.; Namboothiri, I.N.N.; Doris, E. Supramolecular assembly of gold nanoparticles on carbon nanotubes: Application to the catalytic oxidation of hydroxylamines. Nanomaterials 2016, 6, 37. [Google Scholar] [CrossRef]
- Humayun, M.; Li, Z.; Sun, L.; Zhang, X.; Raziq, F.; Zada, A.; Qu, Y.; Jing, L. Coupling of nanocrystalline anatase TiO2 to porous nanosized LaFeO3 for efficient visible-light photocatalytic degradation of pollutants. Nanomaterials 2016, 6, 22. [Google Scholar] [CrossRef]
- Ouyang, W.; Kuna, E.; Yepez, A.; Balu, A.M.; Romero, A.A.; Colmenares, J.C.; Luque, R. Mechanochemical synthesis of TiO2 nanocomposites as photocatalysts for benzyl alcohol photo-oxidation. Nanomaterials 2016, 6, 93. [Google Scholar] [CrossRef]
- Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R.K.; Meledina, M.; Turner, S.; van Tendeloo, G.V.; Goeman, J.L.; van der Eycken, J.V.; Detavernier, C.; et al. Atomic layer deposition of Pt nanoparticles within the cages of MIL-101: A mild and recyclable hydrogenation catalyst. Nanomaterials 2016, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, P.; Joshi, C.; Manchanda, M.; Boukherroub, R.; Jain, S.L. Nickel decorated on phosphorous-doped carbon nitride as an efficient photocatalyst for reduction of nitrobenzenes. Nanomaterials 2016, 6, 59. [Google Scholar] [CrossRef]
- Andreou, D.; Iordanidou, D.; Tamiolakis, I.; Armatas, G.S.; Lykakis, I.N. Reduction of nitroarenes into aryl amines and N-aryl hydroxylamines via activation of NaBH4 and ammonia-borane complexes by Ag/TiO2 catalyst. Nanomaterials 2016, 6, 54. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Qian, R.; Zhao, B.; Zhu, P. Synthesis of ball-like Ag nanorod aggregates for surface-enhanced Raman scattering and catalytic reduction. Nanomaterials 2016, 6, 99. [Google Scholar] [CrossRef]
- Shang, H.; Pan, K.; Zhang, L.; Zhang, B.; Xiang, X. Enhanced activity of supported Ni catalysts promoted by Pt for rapid reduction of aromatic nitro compounds. Nanomaterials 2016, 6, 103. [Google Scholar] [CrossRef]
- Ji, W.; Qi, W.; Tang, S.; Peng, H.; Li, S. Hydrothermal synthesis of ultrasmall Pt nanoparticles as highly active electrocatalysts for methanol oxidation. Nanomaterials 2015, 5, 2203–2211. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Liu, S.; Zhang, L. N-doped TiO2 nanotubes as an effective additive to improve the catalytic capability of methanol oxidation for Pt/graphene nanocomposites. Nanomaterials 2016, 6, 40. [Google Scholar] [CrossRef]
- Chin, C.-C.; Yang, H.-K.; Chen, J.-S. Investigation of MnO2 and ordered mesoporous carbon composites as electrocatalysts for Li-O2 battery applications. Nanomaterials 2016, 6, 21. [Google Scholar] [CrossRef]
- Minguzzi, A.; Longoni, G.; Cappelletti, G.; Pargoletti, E.; di Bari, C.; Locatelli, C.; Marelli, M.; Rondinini, S.; Vertova, A. The influence of carbonaceous matrices and electrocatalytic MnO2 nanopowders on lithium-air battery performances. Nanomaterials 2016, 6, 10. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navalón, S.; García, H. Nanoparticles for Catalysis. Nanomaterials 2016, 6, 123. https://doi.org/10.3390/nano6070123
Navalón S, García H. Nanoparticles for Catalysis. Nanomaterials. 2016; 6(7):123. https://doi.org/10.3390/nano6070123
Chicago/Turabian StyleNavalón, Sergio, and H. García. 2016. "Nanoparticles for Catalysis" Nanomaterials 6, no. 7: 123. https://doi.org/10.3390/nano6070123
APA StyleNavalón, S., & García, H. (2016). Nanoparticles for Catalysis. Nanomaterials, 6(7), 123. https://doi.org/10.3390/nano6070123