Antimicrobial Nanomaterials: Why Evolution Matters
Abstract
:1. Introduction
Moreover, both hydrogel nanocomposite systems exhibited a more effective antibacterial activity against P. aeruginosa …than against E. coli…, as proven with the higher inhibition halo. The explanation of this fact could lie on the ability of E. coli to develop heavy metal resistance, particularly for silver.[1]
2. Physiological Acclimation and Evolutionary Adaptation
3. Evolution Is Always Occurring
4. Genomes Matter
5. Conclusions: How Can We Develop Sustainable Nano-Antimicrobials?
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Soto-Quintero, A.; Romo-Uribe, A.; Bermúdez-Morales, V.H.; Quijada-Garrido, I.; Guarrotxena, N. 3D-hydrogel based polymeric nanoreactors for silver nano-antimicrobial composites generation. Nanomaterials 2017, 7, 209. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.L.; Tajkarimi, M.; Cunningham, Q.; Campbell, A.; Nonga, H.; Harrison, S.H.; Barrick, J.E. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front. Genet. 2015, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.L. A grain of salt: Metallic and metallic oxide nanoparticles as the new antimicrobials. JSM Nanotechnol. Nanomed. 2014, 2, 1026–1030. [Google Scholar]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef]
- Wang, Y.; Kendall, J.; Cavet, J.S.; Giedroc, D.P. Elucidation of the functional metal binding profile of a CdII/PbII sensor CmtRSc from Streptomyces coelicolor. Biochemistry 2010, 49, 6617–6626. [Google Scholar] [CrossRef] [PubMed]
- Krulwich, T.A.; Sachs, G.; Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 2011, 9, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rock, C.O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 2008, 6, 222. [Google Scholar] [CrossRef] [PubMed]
- Holthuis, J.C.M.; Menon, A.K. Lipid landscapes and pipelines in membrane homeostasis. Nature 2014, 510, 48. [Google Scholar] [CrossRef] [PubMed]
- Silver, S.; Phoung, L.T. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 2005, 32, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Tajkarimi, M.; Rhinehardt, K.; Thomas, M.; Ewunkem, J.A.; Campbell, A.; Boyd, S.; Turner, D.; Harrison, S.H.; Graves, J.L. Selection for ionic-confers silver nanoparticle resistance in Escherichia coli. JSM Nanotechnol. Nanomed. 2017, 5, 1047. [Google Scholar]
- Li, X.; Nikaido, H.; Williams, K.E. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 1997, 179, 6127–6132. [Google Scholar] [CrossRef] [PubMed]
- Rensing, C.; Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 2003, 27, 197–213. [Google Scholar] [CrossRef]
- Lewis, K. Persister cells. Annu. Rev. Microbiol. 2010, 64, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Gostinčar, C.; Grube, M.; Gunde-Cimerman, N. Evolution of fungal pathogens in domestic environments? Fungal Biol. 2010, 115, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Kester, J.C.; Fortune, S.M. Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Verdugo, A.; Tenaillon, O.; Gaut, B.S. First-Step mutations during adaptation restore the expression of hundreds of genes. Mol. Biol. Evol. 2016, 33, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Singh, A.; Singh, S.S.; Mishra, A.K. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains. J. Environ. Sci. Health A 2017, 52, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Zorraquino, V.; Kim, M.; Rai, N.; Tagkopoulos, I. The genetic and transcriptional basis of short and long term adaptation across multiple stresses in Escherichia coli. Mol. Biol. Evol. 2017, 34, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Harrison, A.; Sabbani, S.; Munson, R.S., Jr.; Dutta, P.K.; Waldman, W.J. Silver nanoparticles embedded in zeolite membranes: Release of silver ions and mechanism of antibacterial action. Int. J. Nanomed. 2011, 6, 1833–1852. [Google Scholar] [CrossRef]
- Graur, D.; Li, W. Fundamentals of Molecular Evolution, 2nd ed.; Sinauer Publishers: Sunderland, MA, USA, 2000. [Google Scholar]
- Lynch, M. Rate, molecular spectrum, and consequences of human mutations. Proc. Natl. Acad. Sci. USA 2010, 107, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Herron, J.C.; Freeman, S. Evolutionary Analysis, 5th ed.; Pearson: New York, NY, USA, 2014. [Google Scholar]
- Kibota, T.T.; Lynch, M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 1996, 381, 694–696. [Google Scholar] [CrossRef] [PubMed]
- Elena, S.F.; Lenski, R.E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nat. Rev. Genet. 2003, 4, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Travisano, M. Long-term experimental evolution and adaptive radiation. In Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments; Rose, M.R., Garland, T., Eds.; University of California Press: Berkeley, CA, USA, 2009. [Google Scholar]
- Brown, A.; Smith, K.; Samuels, T.A.; Lu, J.; Obare, S.O.; Scott, M.E. Nanoparticles functionalized with ampicillin destroy multiple antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 2012, 78, 2768–2774. [Google Scholar] [CrossRef] [PubMed]
- Koc, S.; Kabatas, B.; Icgen, B. Multidrug and heavy metal-resistant Raoultella planticola isolated from surface water. Bull. Environ. Contam. Toxicol. 2013, 91, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Dobias, J.; Bernier-Latmani, R. Silver release from silver nanoparticles in natural waters. Environ. Sci. Technol. 2013, 47, 4140–4146. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.N.; Hoffman, H. Subtractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the Enterobacter cloacae complex. J. Clin. Microbiol. 2012, 50, 3249–3257. [Google Scholar] [CrossRef] [PubMed]
- Ewunkem, J.; Thomas, M.; Boyd, S.; Tapia, A.; Van Beveren, B.; Graves, J.L. Experimental evolution of ionic iron resistance in Escherichia coli: Too much of a good thing can kill you. 2017; in preparation. [Google Scholar]
- UniProtKB. Available online: http://www.uniprot.org/uniprot/P0A6Y8 (accessed on 20 September 2017).
- Franke, S.; Grass, G.; Rensing, C.; Nies, D.H. Molecular analysis of the copper-transporting efflux system Cus-CFBA of Escherichia coli. J. Bacteriol. 2003, 185, 3804–3812. [Google Scholar] [CrossRef] [PubMed]
- Mosquera-Rendón, J.; Rada-Bravo, A.M.; Cárdenas-Brito, S.; Corredor, M.; Restrepo-Pineda, E.; Benítez-Páez, A. Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genom. 2016, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Von Houdt, R. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 2013, 26, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.J.; Van Houdt, R.; Moors, H.; Monsieurs, P.; Morin, N.; Michaux, A.; Benotmane, M.A.; Leys, N.; Vallaeys, T.; Lapidus, A.; et al. The complete genome sequence of Cupriavidus metallodurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 2010, 5, e10433. [Google Scholar] [CrossRef] [PubMed]
- Mergeay, M. The History of Cupriavidus metallidurans Strains Isolated from Anthropogenic Environments. In Metal Response in Cupriavidus metallidurans; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–19. [Google Scholar]
- Gordienko, E.N.; Kazanov, M.D.; Gelfand, M.S. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J. Bacteriol. 2013, 195, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Syvanen, M. Some computational problems associated with horizontal gene transfer. Syst. Biol. 2006, 1, 248–268. [Google Scholar]
- Fontdevila, A. The Dynamic Genome: A Darwinian Approach; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Katz, L.A.; Bhattacharya, D. Genomics and Evolution of Microbial Eukaryotes; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Perry, J.; Waglechner, N.; Wright, G. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025197. [Google Scholar] [CrossRef] [PubMed]
- Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012, 7, 2767–2781. [Google Scholar] [CrossRef]
- Randall, C.; Gupta, A.; Jackson, N.; Busse, D.; O’Neill, A.J. Silver resistance in Gram-negative bacteria: A dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother. 2015, 70, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Piacenti, F.J. An update and review of antiretroviral therapy. Pharmacotherapy 2006, 26, 1111–1133. [Google Scholar] [CrossRef] [PubMed]
- Asgarali, A.; Stubbs, K.A.; Oliver, A.; Vocadlo, D.J.; Mark, B.L. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal β-lactam resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, K.A.; Balcewich, M.; Mark, B.L.; Vocadlo, D.J. Small molecule inhibitors of a glycoside hydrolase attenuate inducible AmpC-mediated β-lactam resistance. J. Biol. Chem. 2007, 282, 21382–21391. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C. Antibiotic combination efficacy (ACE) Network. In Proceedings of the 3rd Meeting of the International Society for Evolution, Medicine, and Public Health, Groningen, The Netherlands, 20–25 August 2017. [Google Scholar]
- Qiu, Z.; Yu, Y.; Chen, Z.; Jin, M.; Yang, D.; Zhao, Z.; Wang, J.; Shen, Z.; Wang, X.; Qian, D.; et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl. Acad. Sci. USA 2012, 109, 4944–4949. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Conte, A.; Buonocore, G.G.; Del Nobile, M.A. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int. J. Food Microbiol. 2011, 148, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Reinsch, B.C.; Levard, C.; Li, Z.; Ma, R.; Wise, A.; Gregory, K.B.; Brown, G.E., Jr.; Lowry, G.V. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ. Sci. Technol. 2012, 46, 6992–7000. [Google Scholar] [CrossRef] [PubMed]
- Panáček, A.; Smékalová, M.; Večeřová, R.; Bogdanová, K.; Röderová, M.; Kolář, M.; Kilianová, M.; Hradilová, Š.; Froning, J.P.; Havrdová, M.; et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B Biointerfaces 2016, 142, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnol. 2012, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Zhang, Y.; Hu, Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B Biointerfaces 2011, 85, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Eremenko, A.M.; Petrik, I.S.; Smirnova, N.P.; Rudenko, A.V.; Marikvas, Y.S. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles. Nanoscale Res. Lett. 2016, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Leid, J.G.; Ditto, A.J.; Knapp, A.; Shah, P.N.; Wright, B.D.; Blust, R.; Christensen, L.; Clemons, C.B.; Wilber, J.P.; Young, G.W.; et al. In vitro antimicrobial studies of silver carbene complexes: Activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J. Antimicrob. Chemother. 2012, 67, 138–148. [Google Scholar] [CrossRef] [PubMed]
- García, A.; Delgado, L.; Torà, J.A.; Casals, E.; González, E.; Puntes, V.; Font, X.; Carrera, J.; Sánchez, A. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard Mater. 2012, 199–200, 64–72. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Feng, Y.; Gu, N.; Zhang, Y.; Lin, X. The effect of γ-Fe2O3 nanoparticles on Escherichia coli genome. Environ. Pollut. 2011, 159, 3468–3473. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 53, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.; Wang, S.; Hendren, Z.D.; Wiesner, M.R.; Watanabe, Y.; Gunsch, C. Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. J. Membr. Sci. 2009, 329, 68–74. [Google Scholar] [CrossRef]
- MubarakAli, D.; Arunkumar, J.; Nag, K.H.; SheikSyedIshack, K.A.; Baldev, E.; Pandiaraj, D.; Thajuddin, N. Gold nanoparticles from pro and eukaryotic photosynthetic microorganisms—Comparative studies on synthesis and its application on biolabelling. Colloids Surf. B Biointerfaces 2013, 103, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, M.; Fang, Z.X.; Rong, X.H. Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum-packaged Caixin. J. Sci. Food Agric. 2014, 94, 2547–2554. [Google Scholar] [CrossRef] [PubMed]
Chemistry | Organism | Mechanism | Reference |
---|---|---|---|
Nano-Al2O3 | E. coli, Salmonella spp. | Plasmid transfer | Qiu et al., 2012 [48]. |
Ag-montmorillonite | Fruit salad microbiome | Prolongs shelf life | Costa et al., 2011 [49]. |
AgNP-sulfidation | E. coli | Reduces growth inhibition. | Reinsch et al., 2012 [50]. |
AgNP-antibiotics | Enterobacteriaceae | Restores antibiotic activity | Panáček et al., 2016 [51]. |
AgNP, AuNP | E. coli, bacillus Calmette-Guérin | Growth reduction | Zhou et al., 2012 [52]. |
AgNP, CuNP | E. coli, B. subtilis, Staphylococcus aureus | Growth reduction | Ruparelia et al., 2007 [53]. |
AgNP, ZnONP | E. coli, MS2 bacteriophage | Growth reduction | You, Zhang, and Hu 2011 [54]. |
Binary Ag/CU NP | Bacteria and fungi | Growth reduction | Eremenko et al., 2016 [55]. |
Ag Carbene complexes | Acinetobacter baumanii, P. aeruginosa, S. aureus, Bulkholderia cepacia, Klebsiella pneumoniae | Bactericidal | Leid et al., 2011 [56]. |
CeO2, TiO2, Ag, Au, NPs | Wastewater microbiome | Growth, metabolism reduction | Garcia et al., 2012 [57]. |
γ-Fe2O3 NPs | E. coli | Bactericidal, Genomic impact | He et al., 2011 [58]. |
α-Fe2O3 NPs | S. aureus, E. coli, P. aeruginosa, Serratia marcescens | Bactericidal | Ismail et al., 2015 [59]. |
fullerenes | E. coli | Respiratory activity | Chae et al., 2009 [60]. |
Au NPs | Coelastrella sp., Phormidium sp. | Bioaccumulation | MubarekAli et al., 2013 [61]. |
ZnO NPs and microwaves | Brassica chinensis microbiome | Sterilization | Liu et al., 2014 [62]. |
Mechanism | Ag | Fe |
---|---|---|
Reactive oxygen species | + | + |
Binding to thiol groups | + | ? |
Transcription/Translation | + | + |
Cell wall/membrane damage | + | + |
Interfering with respiration | + | + |
Release of cellular components | + | + |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graves, J.L., Jr.; Thomas, M.; Ewunkem, J.A. Antimicrobial Nanomaterials: Why Evolution Matters. Nanomaterials 2017, 7, 283. https://doi.org/10.3390/nano7100283
Graves JL Jr., Thomas M, Ewunkem JA. Antimicrobial Nanomaterials: Why Evolution Matters. Nanomaterials. 2017; 7(10):283. https://doi.org/10.3390/nano7100283
Chicago/Turabian StyleGraves, Joseph L., Jr., Misty Thomas, and Jude Akamu Ewunkem. 2017. "Antimicrobial Nanomaterials: Why Evolution Matters" Nanomaterials 7, no. 10: 283. https://doi.org/10.3390/nano7100283
APA StyleGraves, J. L., Jr., Thomas, M., & Ewunkem, J. A. (2017). Antimicrobial Nanomaterials: Why Evolution Matters. Nanomaterials, 7(10), 283. https://doi.org/10.3390/nano7100283