Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Properties of the Epoxy/SWCNT Nanocomposite
2.2. Moisture Effect on the Structure and Properties of the Epoxy/SWCNT Nanocomposite
3. Materials and Methods
3.1. Atomistic Models
3.2. Equilibration and Tensile Deformation
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Liu, C. Recent developments in polymer mems. Adv. Mater. 2007, 19, 3783–3790. [Google Scholar] [CrossRef]
- Soutis, C. Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Gay, D. Composite Materials: Design and Applications, 3rd ed.; CRC Press-Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Campo, A.D.; Greiner, C. Su-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, R81. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy. Polymer 1999, 40, 5505–5512. [Google Scholar] [CrossRef]
- Prusty, R.K.; Rathore, D.K.; Ray, B.C. CNT/polymer interface in polymeric composites and its sensitivity study at different environments. Adv. Colloid Interface Sci. 2017, 240, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-K.; Hu, C.; Woo, R.S.; Sham, M.-L. Moisture barrier characteristics of organoclay-epoxy nanocomposites. Compos. Sci. Technol. 2005, 65, 805–813. [Google Scholar] [CrossRef]
- Logakis, E.; Pandis, C.; Peoglos, V.; Pissis, P.; Stergiou, C.; Pionteck, J.; Pötschke, P.; Mičušík, M.; Omastová, M. Structure-property relationships in polyamide 6/multi-walled carbon nanotubes nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 764–774. [Google Scholar] [CrossRef]
- Prolongo, S.G.; Gude, M.R.; Ureña, A. Water uptake of epoxy composites reinforced with carbon nanofillers. Compos. Part A Appl. Sci. Manuf. 2012, 43, 2169–2175. [Google Scholar] [CrossRef]
- Starkova, O.; Buschhorn, S.T.; Mannov, E.; Schulte, K.; Aniskevich, A. Water transport in epoxy/MWCNT composites. Eur. Polym. J. 2013, 49, 2138–2148. [Google Scholar] [CrossRef]
- Gkikas, G.; Douka, D.D.; Barkoula, N.M.; Paipetis, A.S. Nano-enhanced composite materials under thermal shock and environmental degradation: A durability study. Compos. Part B Eng. 2015, 70, 206–214. [Google Scholar] [CrossRef]
- Shin, P.-S.; Kwon, D.-J.; Kim, J.-H.; Lee, S.-I.; DeVries, K.L.; Park, J.-M. Interfacial properties and water resistance of epoxy and CNT-epoxy adhesives on GFRP composites. Compos. Sci. Technol. 2017, 142, 98–106. [Google Scholar] [CrossRef]
- Hwang, J.; Ihm, J.; Lee, K.-R.; Kim, S. Computational evaluation of amorphous carbon coating for durable silicon anodes for lithium-ion batteries. Nanomaterials 2015, 5, 1654–1666. [Google Scholar] [CrossRef] [PubMed]
- Kityk, V.I.; Fedorchuk, O.A.; Ozga, K.; AlZayed, S.N. Band structure simulations of the photoinduced changes in the MgB2:Cr films. Nanomaterials 2015, 5, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Manara, M.R.; Tomasio, S.; Khalid, S. The nucleotide capture region of alpha hemolysin: Insights into nanopore design for DNA sequencing from molecular dynamics simulations. Nanomaterials 2015, 5, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-C.; Fang, T.-H.; Chen, T.-H. Stress waves and characteristics of zigzag and armchair silicene nanoribbons. Nanomaterials 2016, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X. DNA sequencing by hexagonal boron nitride nanopore: A computational study. Nanomaterials 2016, 6, 111. [Google Scholar] [CrossRef] [PubMed]
- Tam, L.-h.; Lau, D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials. RSC Adv. 2014, 4, 33074–33081. [Google Scholar] [CrossRef]
- Tam, L.-h.; Lau, D. Moisture effect on the mechanical and interfacial properties of epoxy-bonded material system: An atomistic and experimental investigation. Polymer 2015, 57, 132–142. [Google Scholar] [CrossRef]
- Yang, L.; Greenfeld, I.; Wagner, H.D. Toughness of carbon nanotubes conforms to classic fracture mechanics. Sci. Adv. 2016, 2, e1500969. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Yu, A.; Lu, G. Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 2008, 33, 191–269. [Google Scholar] [CrossRef]
- Pal, G.; Kumar, S. Modeling of carbon nanotubes and carbon nanotube-polymer composites. Prog. Aerosp. Sci. 2016, 80, 33–58. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, Q.; Zou, H.; Zhao, T.; Wang, H. Molecular dynamics simulation of water diffusion inside an amorphous polyacrylate latex film. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 884–891. [Google Scholar] [CrossRef]
- Erdtman, E.; Bohlén, M.; Ahlström, P.; Gkourmpis, T.; Berlin, M.; Andersson, T.; Bolton, K. A molecular-level computational study of the diffusion and solubility of water and oxygen in carbonaceous polyethylene nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 589–602. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, H.-S. Investigation of hygroscopic and mechanical properties of nanoclay/epoxy system: Molecular dynamics simulations and experiments. Compos. Sci. Technol. 2014, 101, 110–120. [Google Scholar] [CrossRef]
- Mijovic, J.; Zhang, H. Molecular dynamics simulation study of motions and interactions of water in a polymer network. J. Phys. Chem. B 2004, 108, 2557–2563. [Google Scholar] [CrossRef]
- Mani, S.; Khabaz, F.; Godbole, R.V.; Hedden, R.C.; Khare, R. Structure and hydrogen bonding of water in polyacrylate gels: Effects of polymer hydrophilicity and water concentration. J. Phys. Chem. B 2015, 119, 15381–15393. [Google Scholar] [CrossRef] [PubMed]
- Panhuis, M.I.H.; Maiti, A.; Dalton, A.B.; van den Noort, A.; Coleman, J.N.; Mccarthy, B.; Blau, W.J. Selective interaction in a polymer-single-wall carbon nanotube composite. J. Phys. Chem. B 2003, 107, 478–482. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Zheng, M.; Park, C.; Wang, X.; Ke, C. Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy. Carbon 2015, 82, 214–228. [Google Scholar] [CrossRef]
- Lu, J.P. Elastic properties of single and multilayered nanotubes. J. Phys. Chem. Solids 1997, 58, 1649–1652. [Google Scholar] [CrossRef]
- Nasibulin, A.G.; Pikhitsa, P.V.; Jiang, H.; Kauppinen, E.I. Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 2005, 43, 2251–2257. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, H.; Pfaler, J.V.; Zhu, Z.; Nasibulin, A.G.; Nikitin, T.; Aitchison, B.; Khriachtchev, L.; Brown, D.P.; Kauppinen, E.I. Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J. Phys. Chem. Lett. 2010, 1, 1143–1148. [Google Scholar] [CrossRef]
- Ionita, M. Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Compos. Part B Eng. 2012, 43, 3491–3496. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, J.; Lin, S.; Ju, S.; Jiang, D. Effects of free organic groups in carbon nanotubes on glass transition temperature of epoxy matrix composites. Compos. Sci. Technol. 2015, 118, 269–275. [Google Scholar] [CrossRef]
- Arash, B.; Wang, Q.; Varadan, V.K. Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 2014, 4, 6479. [Google Scholar] [CrossRef] [PubMed]
- Prolongo, S.G.; Campo, M.; Gude, M.R.; Chaos-Morán, R.; Ureña, A. Thermo-physical characterisation of epoxy resin reinforced by amino-functionalized carbon nanofibers. Compos. Sci. Technol. 2009, 69, 349–357. [Google Scholar] [CrossRef]
- Khare, K.S.; Khare, R. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: Role of interfacial interactions. J. Phys. Chem. B 2013, 117, 7444–7454. [Google Scholar] [CrossRef] [PubMed]
- Alian, A.R.; Kundalwal, S.I.; Meguid, S.A. Multiscale modeling of carbon nanotube epoxy composites. Polymer 2015, 70, 149–160. [Google Scholar] [CrossRef]
- Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science 1983, 221, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Farris, R.J. The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating. J. Mater. Sci. 2002, 37, 4793–4799. [Google Scholar] [CrossRef]
- Tam, L.-H.; Lau, D.; Wu, C. Understanding the moisture effect on the cross-linked epoxy via molecular dynamics simulations. J. Mol. Model. under review.
- Chakraborty, S.; Roy, S. Structural, dynamical, and thermodynamical properties of carbon nanotube polycarbonate composites: A molecular dynamics study. J. Phys. Chem. B 2012, 116, 3083–3091. [Google Scholar] [CrossRef] [PubMed]
- Larin, S.V.; Falkovich, S.G.; Nazarychev, V.M.; Gurtovenko, A.A.; Lyulin, A.V.; Lyulin, S.V. Molecular-dynamics simulation of polyimide matrix pre-crystallization near the surface of a single-walled carbon nanotube. RSC Adv. 2014, 4, 830–844. [Google Scholar] [CrossRef]
- Wu, C.; Xu, W. Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin. Polymer 2007, 48, 5440–5448. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, L.; Jiang, B.; Yin, Q.; Du, K. Effect of water in amorphous polyvinyl formal: Insights from molecular dynamics simulation. J. Mol. Model. 2015, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Tonsing, T.; Oldiges, C. Molecular dynamic simulation study on structure of water in crosslinked poly(n-isopropylacrylamide) hydrogels. Phys. Chem. Chem. Phys. 2001, 3, 5542–5549. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Wang, Q.; Zhang, L.; Wu, T. Structured water and water-polymer interactions in hydrogels of molecularly imprinted polymers. J. Phys. Chem. B 2008, 112, 7515–7521. [Google Scholar] [CrossRef] [PubMed]
- Goudeau, S.; Charlot, M.; Vergelati, C.; Müller-Plathe, F. Atomistic simulation of the water influence on the local structure of polyamide 6, 6. Macromolecules 2004, 37, 8072–8081. [Google Scholar] [CrossRef]
- Pandiyan, S.; Krajniak, J.; Samaey, G.; Roose, D.; Nies, E. A molecular dynamics study of water transport inside an epoxy polymer matrix. Comput. Mater. Sci. 2015, 106, 29–37. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part II: Variations of glass transition temperature. Polymer 1999, 40, 5513–5522. [Google Scholar] [CrossRef]
- Qi, D.; Hinkley, J.; He, G. Molecular dynamics simulation of thermal and mechanical properties of polyimide-carbon-nanotube composites. Modell. Simul. Mater. Sci. Eng. 2005, 13, 493. [Google Scholar] [CrossRef]
- Mokashi, V.V.; Qian, D.; Liu, Y. A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics. Compos. Sci. Technol. 2007, 67, 530–540. [Google Scholar] [CrossRef]
- Sul, J.-H.; Prusty, B.G.; Kelly, D.W. Application of molecular dynamics to evaluate the design performance of low aspect ratio carbon nanotubes in fibre reinforced polymer resin. Compos. Part A Appl. Sci. Manuf. 2014, 65, 64–72. [Google Scholar] [CrossRef]
- Liu, N.; Zeng, X.; Pidaparti, R.; Wang, X. Tough and strong bioinspired nanocomposites with interfacial cross-links. Nanoscale 2016, 8, 18531–18540. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Ruiz, L.; Pugno, N.M.; Keten, S. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. Nanoscale 2016, 8, 6456–6462. [Google Scholar] [CrossRef] [PubMed]
- Accelrys Software Inc. Materials Studio; Accelrys Software Inc.: San Diego, CA, USA, 2009. [Google Scholar]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Maple, J.R.; Dinur, U.; Hagler, A.T. Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proc. Natl. Acad. Sci. USA 1988, 85, 5350–5354. [Google Scholar] [CrossRef] [PubMed]
- Dauber-Osguthorpe, P.; Roberts, V.A.; Osguthorpe, D.J.; Wolff, J.; Genest, M.; Hagler, A.T. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct. Funct. Bioinform. 1988, 4, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Varshney, V.; Roy, A.; Michalak, T.; Lee, J.; Farmer, B. Effect of curing and functionalization on the interface thermal conductance in carbon nanotube-epoxy composites. JOM 2013, 65, 140–146. [Google Scholar] [CrossRef]
- Donald, W.B.; Olga, A.S.; Judith, A.H.; Steven, J.S.; Boris, N.; Susan, B.S. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 2002, 14, 783. [Google Scholar]
- Vu-Bac, N.; Lahmer, T.; Zhang, Y.; Zhuang, X.; Rabczuk, T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Compos. Part B Eng. 2014, 59, 80–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, X.; Muthu, J.; Mabrouki, T.; Fontaine, M.; Gong, Y.; Rabczuk, T. Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation. Compos. Part B Eng. 2014, 63, 27–33. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation using Particles; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Oie, T.; Maggiora, G.M.; Christoffersen, R.E.; Duchamp, D.J. Development of a flexible intra- and intermolecular empirical potential function for large molecular systems. Int. J. Quantum Chem. 1981, 20, 1–47. [Google Scholar] [CrossRef]
- Hirschl, C.; Biebl-Rydlo, M.; DeBiasio, M.; Mühleisen, W.; Neumaier, L.; Scherf, W.; Oreski, G.; Eder, G.; Chernev, B.; Schwab, W. Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—A comparative study. Sol. Energy Mater. Sol. Cells 2013, 116, 203–218. [Google Scholar] [CrossRef]
- Chernev, B.S.; Hirschl, C.; Eder, G.C. Non-destructive determination of ethylene vinyl acetate cross-linking in photovoltaic (PV) modules by Raman spectroscopy. Appl. Spectrosc. 2013, 67, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tam, L.-h.; Wu, C. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites. Nanomaterials 2017, 7, 324. https://doi.org/10.3390/nano7100324
Tam L-h, Wu C. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites. Nanomaterials. 2017; 7(10):324. https://doi.org/10.3390/nano7100324
Chicago/Turabian StyleTam, Lik-ho, and Chao Wu. 2017. "Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites" Nanomaterials 7, no. 10: 324. https://doi.org/10.3390/nano7100324
APA StyleTam, L. -h., & Wu, C. (2017). Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites. Nanomaterials, 7(10), 324. https://doi.org/10.3390/nano7100324