Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine
Abstract
:1. Introduction
2. Results
2.1. Absorption Spectrum
2.2. Production of ROS
2.3. Photokilling Effects of Samples on HeLa Cells
3. Discussion
4. Materials and Methods
4.1. Preparation and Characterization of Samples
4.2. Measurement of Reactive Oxygen Species (ROS)
4.3. Cell Culture and Cytotoxicity Assay
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dawson, A.; Kamat, P.V. Semiconductor-metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold Capped TiO2 (TiO2/Au) Nanoparticles. J. Phys. Chem. B 2001, 105, 960–966. [Google Scholar] [CrossRef]
- Yin, Z.F.; Wu, L.; Yang, H.G.; Su, Y.H. Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys. 2013, 15, 4844–4858. [Google Scholar] [CrossRef] [PubMed]
- Lagopati, N.; Kitsiou, P.V.; Kontos, A.I.; Venieratos, P.; Kotsopoulou, E.; Kontos, A.G.; Dionysiou, D.D.; Pispas, S.; Tsilibary, E.C.; Falaras, P. Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J. Photoch. Photobiol. A 2010, 214, 215–223. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A.P. Modified titanium oxide (TiO2) nanocomposites and its array of applications: A review. Toxicol. Environ. Chem. 2015, 97, 1–43. [Google Scholar] [CrossRef]
- Fan, W.; Huang, P.; Chen, X. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488–6519. [Google Scholar] [CrossRef] [PubMed]
- Lopez, T.; Ortiz, E.; Alvarez, M.; Navarrete, J.; Odriozola, J.A.; Martinez-Ortega, F.; Páez-Mozo, E.A.; Escobar, P.; Espinoza, K.A.; Rivero, I.A. Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Nanomed. 2010, 6, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.U.; Choi, J.H.; Lee, S.J.; Lee, S.G. Synthesis and characterization of Cu-phthalocyanine hybrid TiO2 sol. J. Porphyr. Phthalocyanines 2009, 13, 779–786. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, Y. Sensitization of TiO2 with Aluminum Phthalocyanine: Factors Influencing the Efficiency for Chlorophenol Degradation in Water under Visible Light. J. Phys. Chem. C 2009, 113, 12387–12394. [Google Scholar] [CrossRef]
- Reeves, J.F.; Davies, S.J.; Dodd, N.J.F.; Jha, A.N. Hydroxyl radicals (•OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2008, 640, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pan, X.; Wang, T.; Wang, P.-N.; Chen, J.-Y.; Mi, L. Comparison of the killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation. Nanoscale Res. Lett. 2013, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Xie, J.; Li, Z.; Chen, M.; Wang, M.; Wang, P.-N.; Chen, L.; Mi, L. Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles. Colloids Surf. B 2015, 130, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.M.; Manorama, S.V.; Reddy, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 2003, 78, 239–245. [Google Scholar] [CrossRef]
- Ukaji, E.; Furusawa, T.; Sato, M.; Suzuki, N. The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl. Surf. Sci. 2007, 254, 563–569. [Google Scholar] [CrossRef]
- Xie, J.; Pan, X.; Wang, M.; Ma, J.; Fei, Y.; Wang, P.N.; Mi, L. The role of surface modification for TiO2 nanoparticles in cancer cells. Colloids Surf. B 2016, 143, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mi, L.; Wang, P.-N.; Chen, J.-Y. Study on the visible-light-induced photokilling effect of nitrogen-doped TiO2 nanoparticles on cancer cells. Nanoscale Res. Lett. 2011, 6, 356. [Google Scholar] [CrossRef] [PubMed]
- Clejan, L.A.; Cederbaum, A.I. Role of Iron, Hydrgen Peroxide and Reactive Oxygen Species in Microsomal Oxidation of Glycerol to Formaldehyde. Arch. Biochem. Biophys. 1991, 285, 83–89. [Google Scholar] [CrossRef]
- Tai, Y.; Inoue, H.; Sakurai, T.; Yamada, H.; Morito, M.; Ide, F.; Mishima, K.; Saito, I. Protective Effect of Lecithinized SOD on Reactive Oxygen Species-Induced Xerostomia. Radiat. Res. 2009, 172, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Sardar, S.; Chaudhuri, S.; Kar, P.; Sarkar, S.; Lemmens, P.; Pal, S.K. Direct observation of key photoinduced dynamics in a potential nano-delivery vehicle of cancer drugs. Phys. Chem. Chem. Phys. 2015, 17, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wu, W.; Chen, J.; Chu, G.; Ma, K.; Zou, H. Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions. Colloids Surf. A 2012, 409, 118–125. [Google Scholar] [CrossRef]
- Mi, L.; Zhang, Y.; Wang, P.N. First-principles study of the hydrogen doping influence on the geometric and electronic structures of N-doped TiO2. Chem. Phys. Lett. 2008, 458, 341–345. [Google Scholar] [CrossRef]
- Tafen, D.N.; Wang, J.; Wu, N.; Lewis, J.P. Visible light photocatalytic activity in nitrogen-doped TiO2 nanobelts. Appl. Phys. Lett. 2009, 94, 093101–093103. [Google Scholar] [CrossRef]
- Dimitrijevic, N.M.; Rozhkova, E.; Rajh, T. Dynamics of Localized Charges in Dopamine-Modified TiO2 and their Effect on the Formation of Reactive Oxygen Species. J. Am. Chem. Soc. 2009, 131, 2893–2899. [Google Scholar] [CrossRef] [PubMed]
- Mi, L.; Xu, P.; Wang, P.-N. Experimental study on the bandgap narrowings of TiO2 films calcined under N2 or NH3 atmosphere. Appl. Surf. Sci. 2008, 255, 2574–2580. [Google Scholar] [CrossRef]
- Cathcart, R.; Schwiers, E.; Ames, B.N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem. 1983, 134, 111–116. [Google Scholar] [CrossRef]
- Cossu, A.; Le, P.; Young, G.; Nitin, N. Assessment of sanitation efficacy against Escherichia coli O157:H7 by rapid measurement of intracellular oxidative stress, membrane damage or glucose active uptake. Food Control 2017, 71, 293–300. [Google Scholar] [CrossRef]
- Sumitomo, K.; Shishido, N.; Aizawa, H.; Hasebe, N.; Kikuchi, K.; Nakamura, M. Effects of MCI-186 upon neutrophil-derived active oxygens. Redox Rep. 2007, 12, 189–194. [Google Scholar] [CrossRef] [PubMed]
•O2− | 1O2/•O2− | |||
---|---|---|---|---|
Excitation Range | 420–800 nm | 420–575 nm | 420–800 nm | 420–575 nm |
N-TiO2-Pc | 12.6 ± 0.3 | 20.9 ± 0.7 | 52.3 ± 1.8 | 66.6 ± 1.6 |
TiO2-Pc | 7.6 ± 0.2 | 10.0 ± 0.1 | 69.8 ± 1.7 | 63.7 ± 0.1 |
Pc | 7.5 ± 0.1 | -- | 65.6 ± 0.9 | -- |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Liang, X.; Yao, L.; Wang, X.; Jing, Y.; Ma, J.; Fei, Y.; Chen, L.; Mi, L. Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine. Nanomaterials 2017, 7, 338. https://doi.org/10.3390/nano7100338
Pan X, Liang X, Yao L, Wang X, Jing Y, Ma J, Fei Y, Chen L, Mi L. Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine. Nanomaterials. 2017; 7(10):338. https://doi.org/10.3390/nano7100338
Chicago/Turabian StylePan, Xiaobo, Xinyue Liang, Longfang Yao, Xinyi Wang, Yueyue Jing, Jiong Ma, Yiyan Fei, Li Chen, and Lan Mi. 2017. "Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine" Nanomaterials 7, no. 10: 338. https://doi.org/10.3390/nano7100338
APA StylePan, X., Liang, X., Yao, L., Wang, X., Jing, Y., Ma, J., Fei, Y., Chen, L., & Mi, L. (2017). Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine. Nanomaterials, 7(10), 338. https://doi.org/10.3390/nano7100338