An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Chemicals and Materials
3.2. Synthesis of GNPs
3.3. Preparation of GNPs-Glass Substrate
3.4. Coating Polyaniline (PANI) onto GNPs-Glass Substrate
3.5. Measuring the pH Sensitivity of PANI-GNPs-Glass Substrate
3.6. Characterization
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Papacosta, E.; Nassis, G.P. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J. Sci. Med. Sport 2011, 14, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, G.; Ericson, T.; Ekblom, B.; Birkhed, D. Saliva and marathon running. Scand. J. Med. Sci. Sports 1997, 7, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Khaustova, S.A.; Shkurnikov, M.U.; Tonevitsky, A.G. Short highly intense exercise causes changes in salivary concentrations of hydrocortisone and secretory IgA. Bull. Exp. Biol. Med. 2010, 149, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Ghimenti, S.; Lomonaco, T.; Onor, M.; Murgia, L.; Paolicchi, A.; Fuoco, R.; Ruocco, L.; Pellegrini, G.; Trivella, M.G.; Francesco, F.D. Measurement of warfarin in the oral fluid of patients undergoing anticoagulant oral therapy. PLoS ONE 2011, 6, e28182. [Google Scholar] [CrossRef] [PubMed]
- Herr, A.E.; Hatch, A.V.; Giannobile, W.V.; Throckmorton, D.J.; Tran, H.M.; Brennan, J.S.; Singh, A.K. Integrated microfluidic platform for oral diagnostics. Ann. N. Y. Acad. Sci. 2007, 1098, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Brooks, E.; Li, Y.; Denny, P.; Ho, C.M.; Qi, F.X.; Shi, W.Y.; Wolinsky, L.; Wu, B.; Wong, D.T.W. Detection of picomolar levels of interleukin-8 in human saliva by SPR. Lab Chip 2005, 5, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Yoda, K.; Shimazaki, K.; Ueda, Y. Analysis of glycolysis relevant compounds in saliva by microbiosensors. Ann. N. Y. Acad. Sci. 1998, 864, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Diamond, D. Peer reviewed: Internet-scale sensing. Anal. Chem. 2004, 76, A278–A286. [Google Scholar] [CrossRef]
- Arakawa, T.; Kuroki, Y.; Nitta, H.; Chouhan, P.; Toma, K.; Sawada, S.; Takeuchi, S.; Sekita, T.; Akiyoshi, K.; Minakuchi, S.; et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor. Biosens. Bioelectron. 2016, 84, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.Q.; Zhang, W.J.; Wang, M.L. Sensing of salivary glucose using nano-structured biosensors. Biosensors 2016, 6, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Millward, A.; Shaw, L.; Harrington, E.; Smith, A.J. Continuous monitoring of salivary flow rate and pH at the surface of the dentition following consumption of acidic beverages. Caries Res. 1997, 31, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Batista, G.R.; Torres, C.R.G.; Sener, B.; Attin, T.; Wiegand, A. Artificial saliva formulations versus human saliva pretreatment in dental erosion experiments. Caries Res. 2016, 50, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Robin, A.; Meirelis, J.P. Influence of fluoride concentration and pH on corrosion behavior of Ti-6Al-4V and Ti-23Ta alloys in artificial saliva. Mater. Corros. 2007, 58, 173–180. [Google Scholar] [CrossRef]
- Eckley, C.A.; Costa, H.O. Comparative study of salivary pH and volume in adults with chronic laryngopharyngitis by gastroesophageal reflux disease before and after treatment. Braz. J. Otorhinolaryngol. 2006, 72, 55–60. [Google Scholar] [CrossRef]
- Bouchoucha, M.; Callais, F.; Renard, P.; Ekindjian, O.G.; Cugnenc, P.H.; Barbier, J.P. Relationship between acid neutralization capacity of saliva and gastro-oesophageal reflux. Arch. Physiol. Biochem. 1997, 105, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lazarchik, D.A.; Filler, S.J. Effects of gastroesophageal reflux on the oral cavity. Am. J. Med. 1997, 103, S107–S113. [Google Scholar] [CrossRef]
- Sujatha, S.; Jalihal, U.; Devi, Y.; Rakesh, N.; Chauhan, P.; Sharma, S. Oral pH in gastroesophageal reflux disease. Indian J. Gastroenterol. 2016, 35, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Martori, E.; Ayuso-Montero, R.; Martinez-Gomis, J.; Viñas, M.; Peraire, M. Risk factors for denture-related oral mucosal lesions in a geriatric population. J. Prosthet. dent. 2014, 111, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Dodds, M.W.J.; Johnson, D.A.; Yeh, C.K. Health benefits of saliva: A review. J. Dent. 2005, 33, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Q.; Lu, X.B.; Li, J.H. Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets. Biosens. Bioelectron. 2007, 23, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Imfeld, T.N. Identification of low caries risk dietary components. Monogr. Oral Sci. 1983, 11, 1–198. [Google Scholar] [PubMed]
- Ayazi, S.; Lipham, J.C.; Hagen, J.A.; Tang, A.L.; Zehetner, J.; Leers, J.M.; Oezcelik, A.; Abate, E.; Banki, F.; DeMeester, S.R. A new technique for measurement of pharyngeal pH: Normal values and discriminating pH threshold. J. Gastrointest. Surg. 2009, 13, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, C.; Matzeu, G.; Diamond, D. A potentiometric disposable sensor strip for measuring pH in saliva. Electrochim. Acta 2014, 132, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Visch, L.L.; Bergveld, P.; Lamprecht, W. pH measurements with an ion sensitive field effect transistor in the mouth of patients with xerostomia. IEEE Trans. Biomed. Eng. 1991, 38, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.J.; Song, Z.H. Continuous, quantitative monitoring of roxithromycin in human saliva by flow injection chemiluminescence analysis. Appl. Spectrosc. 2013, 67, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, J.H.; Liu, T.R.; Tao, Y.T.; Jiang, R.B.; Liu, M.X.; Xiao, G.H.; Zhu, J.H.; Zhou, Z.K.; Wang, X.H.; et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 2381–2389. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Zeng, J.; Grant, J.; Wu, H.K.; Xia, Y.N. On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies. Small 2011, 7, 3308–3316. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.H.; Zeng, J.; Zhang, Q.; Moran, C.H.; Xia, Y.N. Recent developments in shape-controlled synthesis of silver nanocrystals. J. Phys. Chem. C 2012, 116, 21647–21656. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.K.; McClory, P.J.; Muhoberac, B.B.; Kumbhar, A.; Smith, K.A.; Sardar, R. Designing efficient localized surface plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms. J. Phys. Chem. C 2012, 116, 20990–21000. [Google Scholar] [CrossRef]
- Jiang, N.N.; Shao, L.; Wang, J.F. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 2014, 26, 3282–3289. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.L.; Yang, C.Y.; Li, X.W.; Wang, G.C. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 2013, 5, 8467–8476. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Q.; Liu, R.M.; Tang, P.J.; Li, W.B.; Zhong, H.X.; Zhou, Z.K.; Zhou, J.H. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy. RSC Adv. 2015, 5, 80709–80718. [Google Scholar] [CrossRef]
- Liu, R.M.; Zhou, J.H.; Zhou, Z.K.; Jiang, X.Q.; Liu, J.M.; Liu, G.H.; Wang, X.H. On-demand shape and size purification of nanoparticle based on surface area. Nanoscale 2014, 6, 13145–13153. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Ruan, Q.F.; Jiang, R.B.; Wang, J.F. Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics. Small 2014, 10, 802–811. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; Wang, Y.; Li, X.; Jiang, X.; Gao, P.; Sun, K.; Zhou, J.; Zhang, Z.; Jiang, Q. An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva. Nanomaterials 2017, 7, 67. https://doi.org/10.3390/nano7030067
Luo C, Wang Y, Li X, Jiang X, Gao P, Sun K, Zhou J, Zhang Z, Jiang Q. An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva. Nanomaterials. 2017; 7(3):67. https://doi.org/10.3390/nano7030067
Chicago/Turabian StyleLuo, Chongdai, Yangyang Wang, Xuemeng Li, Xueqin Jiang, Panpan Gao, Kang Sun, Jianhua Zhou, Zhiguang Zhang, and Qing Jiang. 2017. "An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva" Nanomaterials 7, no. 3: 67. https://doi.org/10.3390/nano7030067
APA StyleLuo, C., Wang, Y., Li, X., Jiang, X., Gao, P., Sun, K., Zhou, J., Zhang, Z., & Jiang, Q. (2017). An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva. Nanomaterials, 7(3), 67. https://doi.org/10.3390/nano7030067