Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Modification
2.2. Stacking Fault Tetrahedron in Bulk
3. Materials and Methods
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dienes, G.J. Radiation effects in solids. Annu. Rev. Nucl. Sci. 1953, 2, 187–220. [Google Scholar] [CrossRef]
- Brinkman, J.A. On the nature of radiation damage in metals. J. Appl. Phys. 1954, 25, 961–970. [Google Scholar] [CrossRef]
- Bacon, D.J.; Osetsky, Y.N.; Stoller, R.; Voskoboinikov, R.E. MD description of damage production in displacement cascades in copper and α-iron. J. Nucl. Mater. 2003, 323, 152–162. [Google Scholar] [CrossRef]
- Robertson, I.M.; Was, G.S.; Hobbs, L.W.; Diaz de la Rubia, T. Microstructure evolution during irradiation. In Proceedings of the 1996 Fall Meeting of the Materials Research Society (MRS), Boston, MA, USA, 2–6 December 1996. [Google Scholar]
- Nordlund, K.; Gao, F. Atomic fingers, bridges and slingshots: Formation of exotic surface structures during ion irradiation of heavy metals. Nucl. Instrum. Methods Phys. Res. Sec. B 2003, 206, 189–193. [Google Scholar] [CrossRef]
- Diaz de la Rubia, T.; Guinan, M.W. New mechanism of defect production in metals: A molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades. Phys. Rev. Lett. 1991, 66, 2766–2769. [Google Scholar] [CrossRef] [PubMed]
- Schäublin, R.; Yao, Z.; Baluc, N.; Victoria, M. Irradiation-induced stacking fault tetrahedra in fcc metals. Philos. Mag. 2005, 85, 769–777. [Google Scholar] [CrossRef]
- Birtcher, R.C.; Donnelly, S.E. Plastic flow induced by single ion impacts on gold. Phys. Rev. Lett. 1996, 77, 4374–4377. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, S.E.; Birtcher, R.C. Heavy ion cratering of gold. Phys. Rev. B 1997, 56, 13599–13602. [Google Scholar] [CrossRef]
- Donnelly, S.E.; Birtcher, R.C. Ion-induced spike effects on metal surfaces. Philos. Mag. A 1999, 79, 133–145. [Google Scholar] [CrossRef]
- Satyam, P.V.; Kamila, J.; Mohapatra, S.; Satpati, B.; Goswami, D.K.; Dev, B.N.; Cook, R.E.; Assoufid, L.; Wang, J.; Mishra, N.C. Crater formation in gold nanoislands due to MeV self-ion irradiation. J. Appl. Phys. 2003, 93, 6399–6410. [Google Scholar] [CrossRef]
- Nordlund, K.; Gao, F. Formation of stacking-fault tetrahedra in collision cascades. Appl. Phys. Lett. 1999, 74, 2720–2722. [Google Scholar] [CrossRef]
- Hoffmann, S.; Bauer, J.; Ronning, C.; Stelzner, T.; Michler, J.; Ballif, C.; Sivakov, V.; Christiansen, S.H. Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 2009, 9, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Krasheninnikov, A.V.; Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010, 107, 071301. [Google Scholar] [CrossRef]
- Frost, F.; Ziberi, B.; Schindler, A.; Rauschenbach, B. Surface engineering with ion beams: From self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 2008, 91, 551–559. [Google Scholar] [CrossRef]
- Gogolides, E.; Constantoudis, V.; Kokkoris, G.; Kontziampasis, D.; Tsougeni, K.; Boulousis, G.; Vlachopoulou, M.; Tserepi, A. Controlling roughness: From etching to nanotexturing and plasma-directed organization on organic and inorganic materials. J. Phys. D 2011, 44, 174021. [Google Scholar] [CrossRef]
- Duan, J.L.; Liu, J.; Yao, H.; Mo, D.; Hou, M.; Sun, Y.; Chen, Y.; Zhang, L. Controlled synthesis and diameter-dependent optical properties of Cu nanowire arrays. Mater. Sci. Eng. B 2008, 147, 57–62. [Google Scholar] [CrossRef]
- Yao, H.; Duan, J.; Mo, D.; Yusuf, G.H.; Chen, Y.; Liu, J.; Schäpers, T. Optical and electrical properties of gold nanowires synthesized by electrochemical deposition. J. Appl. Phys. 2011, 110, 094301. [Google Scholar] [CrossRef]
- Lyu, S.; Lei, D.; Liu, W.; Yao, H.; Mo, D.; Chen, Y.; Hu, P.; Sun, Y.; Liu, J.; Duan, J. Cyanide-free preparation of gold nanowires: Controlled crystallinity, crystallographic orientation and enhanced field emission. RSC Adv. 2015, 5, 32103–32109. [Google Scholar] [CrossRef]
- Johannes, A.; Holland-Moritz, H.; Ronning, C. Ion beam irradiation of nanostructures: Sputtering, dopant incorporation, and dynamic annealing. Semicond. Sci. Technol. 2015, 30. [Google Scholar] [CrossRef]
- Birtcher, R.C.; Donnelly, S.E.; Schlutig, S. Nanoparticle ejection from Au induced by single Xe ion impacts. Phys. Rev. Lett. 2000, 85, 4968–4971. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, M.; Averback, R.S. Effect of viscous flow on ion damage near solid surfaces. Phys. Rev. Lett. 1994, 72, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Greaves, G.; Hinks, J.A.; Busby, P.; Mellors, N.J.; Ilinov, A.; Kuronen, A.; Nordlund, K.; Donnelly, S.E. Enhanced sputtering yields from single-ion impacts on gold nanorods. Phys. Rev. Lett. 2013, 111, 065504. [Google Scholar] [CrossRef] [PubMed]
- Robertson, I.M.; Rehn, L.E.; Zinkle, S.J.; Phythian, W.J. Microstructure of irradiated materials. In Proceedings of the Fall Meeting of the Materials Research Society (MRS), Boston, MA, USA, 28 November–9 December 1994. [Google Scholar]
- Kojima, S.; Satoh, Y.; Taoka, H.; Ishida, I.; Yoshiie, T.; Kiritani, M. Confirmation of vacancy-type stacking fault tetrahedra in quenched, deformed and irradiated face-centred cubic metals. Philos. Mag. A 1989, 59, 519–532. [Google Scholar] [CrossRef]
- Silcox, J.; Hirsch, P.B. Direct observations of defects in quenched gold. Philos. Mag. 1959, 4, 72–89. [Google Scholar] [CrossRef]
- Figueroa, E.; Tramontina, D.; Gutierrez, G.; Bringa, E. Mechanical properties of irradiated nanowires—A molecular dynamics study. J. Nucl. Mater. 2015, 467, 677–682. [Google Scholar] [CrossRef]
- Ferain, E.; Legras, R. Heavy-ion tracks in polycarbonate. Radiat. Eff. Defects Solids 1993, 126, 243–246. [Google Scholar] [CrossRef]
- Peng, L.Q.; Wang, S.C.; Ju, X.; Apel, P.Y.; Yoshida, M.; Maekawa, Y. Fabrication of nanoporous nuclear track membranes. High Energy Phys. Nucl. Phys. 2001, 25, 359–364. [Google Scholar]
Parameter Settings | Stopping Power in Gold | ||||
---|---|---|---|---|---|
Ion Species | Energy (MeV) | Fluence (Ions cm−2) | (keV/nm) | (keV/nm) | Projected Range (nm) |
Xe | 1.4 | 1 × 1014 | 1.44 | 4.83 | 143 |
Xe | 4 | 3.21 | 3.33 | 441 | |
Kr | 1.4 | 1.28 | 2.15 | 237 | |
Kr | 3 | 2.51 | 1.54 | 532 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Yao, H.; Duan, J.; Xu, L.; Zhai, P.; Lyu, S.; Chen, Y.; Maaz, K.; Mo, D.; Sun, Y.; et al. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires. Nanomaterials 2017, 7, 108. https://doi.org/10.3390/nano7050108
Cheng Y, Yao H, Duan J, Xu L, Zhai P, Lyu S, Chen Y, Maaz K, Mo D, Sun Y, et al. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires. Nanomaterials. 2017; 7(5):108. https://doi.org/10.3390/nano7050108
Chicago/Turabian StyleCheng, Yaxiong, Huijun Yao, Jinglai Duan, Lijun Xu, Pengfei Zhai, Shuangbao Lyu, Yonghui Chen, Khan Maaz, Dan Mo, Youmei Sun, and et al. 2017. "Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires" Nanomaterials 7, no. 5: 108. https://doi.org/10.3390/nano7050108
APA StyleCheng, Y., Yao, H., Duan, J., Xu, L., Zhai, P., Lyu, S., Chen, Y., Maaz, K., Mo, D., Sun, Y., & Liu, J. (2017). Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires. Nanomaterials, 7(5), 108. https://doi.org/10.3390/nano7050108