Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives
Abstract
:1. Introduction
Synthetic Routes for Au and Ag Nanoparticles
2. Organometallic and Hydrophobic Ligands, Capping Agents for Au and Ag Nanoparticles
3. Hydrophilic and Amphiphilic Ligands, Capping Agents for Au and Ag Nanoparticles
3.1. Ligands Coverage Assessment
3.2. Drug Delivery Applications
3.3. Aunp-Based Composites
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Heiligtag, F.J.; Niederberger, M. The Fascinating World of Nanoparticle Research. Mater. Today 2013, 16, 262–271. [Google Scholar] [CrossRef]
- Stratakis, M.; Garcia, H. Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chem. Rev. 2012, 112, 4469–4506. [Google Scholar] [CrossRef] [PubMed]
- Bond, G.C. Hydrogenation by gold catalysts: An unexpected discovery and a current assessment. Gold Bull. 2016, 49, 53–61. [Google Scholar] [CrossRef]
- Abdelhalim, M.A.K.; Mady, M.M.; Ghannam, M.M. Physical Properties of Different Gold Nanoparticles: Ultraviolet-Visible and Fluorescence Measurements. J. Nanomed. Nanotechnol. 2012, 3, 133–137. [Google Scholar] [CrossRef]
- Li, Y.; Schluesener, H.J.; Xu, S. Gold Nanoparticle-Based Biosensors. Gold Bull. 2010, 43, 29–41. [Google Scholar] [CrossRef]
- Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic Therapeutic Applications of Noble Metal Nanoparticles: Past, Present and Future. Chem. Soc. Rev. 2012, 41, 2943–2970. [Google Scholar] [CrossRef] [PubMed]
- Dykman, L.; Khlebtsov, N. Gold Nanoparticles in Biomedical Applications: Recent Advances and Perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282. [Google Scholar] [CrossRef] [PubMed]
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The Golden Age: Gold Nanoparticles for Biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. [Google Scholar] [CrossRef] [PubMed]
- Bessar, H.; Venditti, I.; Benassi, L.; Vaschieri, C.; Azzoni, P.; Pellacani, G.; Magnoni, C.; Botti, E.; Casagrande, V.; Federici, M.; et al. Functionalized Gold Nanoparticles for Topical Delivery of Methotrexate for the Treatment of Psoriasis. Colloids Surf. B 2016, 141, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Moyano, D.F.; Rotello, V.M. Nano Meets Biology: Structure and Function at the Nanoparticle Interface. Langmuir 2011, 27, 10376–10385. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Liang, X.; Deng, Z.; Feng, S.; Li, X.; Huang, M.; Li, C.; Dai, Z. Prussian Blue Coated Gold Nanoparticles for Simultaneous Photoacoustic/CT Bimodal Imaging and Photothermal Ablation of Cancer. Biomaterials 2014, 35, 5814–5821. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C.W.; Bonn, G.K. Au-Nanomaterials as a Superior Choice for Near-Infrared Photothermal Therapy. Molecules 2014, 19, 20580–20593. [Google Scholar] [CrossRef] [PubMed]
- Cushing, B.L.; Kolesnichenko, V.L.; O’Connor, C.J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104, 3893–3946. [Google Scholar] [CrossRef] [PubMed]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Brown, K.R.; Walter, D.G.; Natan, M.J. Seeding of Colloidal Au Solutions. 2. Improved Control of Particle Size and Shape. Chem. Mater. 2000, 12, 306–313. [Google Scholar] [CrossRef]
- Bastus, N.G.; Comenge, J.; Puntes, V. Kinetically Controlled Seeded Growth of Citrate Stabilized Gold Nanoparticles up to 200 nm. Size Focusing Versus Ostwald Ripening. Langmuir 2011, 27, 11098–11105. [Google Scholar] [CrossRef] [PubMed]
- Dewi, M.R.; Laufersky, G.; Nann, T. A Highly Efficient Ligand Exchange Reaction on Gold Nanoparticles: Preserving their Size, Shape and Colloidal Stability. RSC Adv. 2014, 4, 34217–34220. [Google Scholar] [CrossRef]
- Ng, V.N.K.; Berti, R.; Lesage, F.; Kakkar, A. Gold: A Versatile Tool for in vivo Imaging. J. Mater. Chem. B 2013, 1, 9–25. [Google Scholar] [CrossRef]
- Shem, M.P.; Sardar, R.; Shumaker-Parry, J.S. One-Step Synthesis of Phosphine-Stabilized Gold Nanoparticles Using the Mild Reducing Agent 9-BBN. Langmuir 2009, 25, 13279–13283. [Google Scholar] [CrossRef] [PubMed]
- Rak, M.J.; Saadé, N.K.; Friščić, T.; Moores, A. Mechanosynthesis of Ultra-Small Monodisperse Amine-Stabilized Gold Nanoparticle with Controllable Size. Green Chem. 2014, 16, 86–89. [Google Scholar] [CrossRef]
- Selvakannan, P.R.; Mandal, S.; Phadtare, S.; Pasricha, R.; Sastry, M. Capping of Gold Nanoparticles by the Amino Acid Lysine Renders them Water Dispersible. Langmuir 2003, 19, 3545–3549. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum Size Related Properties and Applications towards Biology, Catalysis and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, M.; Wingate, J.; Zhong, C.; Harris, J.; Vachet, R.; Clark, M.; Londono, J.; Green, S.; Stokes, J.; Wignall, G. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size. Langmuir 1998, 14, 17–30. [Google Scholar] [CrossRef]
- Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T. Kinetic Stabilization of Growing Gold Clusters by Passivation with Thiolates. J. Chem. Phys. B 2006, 110, 12218–12221. [Google Scholar] [CrossRef] [PubMed]
- Perala, S.R.K.; Kumar, S. On the Mechanism of Metal Nanoparticle Synthesis in the Brust-Schiffrin Method. Langmuir 2013, 29, 9863–9873. [Google Scholar] [CrossRef] [PubMed]
- Gaulet, P.J.G.; Lennox, B. New Insights into Brust Schiffrin Metal Nanoparticle Synthesis. J. Am. Chem. Soc. 2010, 132, 9582–9584. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zaluzhna, O.; Zangmeister, C.D.; Allison, T.C.; Tong, Y.J. Different Mechanisms Govern the Two Phases Brust-Schiffrin Dialkilditeluride Syntheses of Au and Ag Nanoparticles. J. Am. Chem. Soc. 2012, 134, 1990–1992. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, C.; Guo, C.; Wang, X.; Sun, P.; Zhou, D.; Chen, W.; Xue, G. New Insight into Intermediate Percursors of Brust-Schiffrin Nanoparticles Synthesis. J. Phys. Chem. C 2013, 117, 11399–11404. [Google Scholar] [CrossRef]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669–3712. [Google Scholar] [CrossRef] [PubMed]
- Kholoud, M.M.; Abou El-Nour, M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and Applications of Silver Nanoparticles. Arab. J. Chem. 2010, 3, 135–140. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Zhong, L.; Wu, G. Preparation of High-Stable Silver Nanoparticle Dispersion by using Sodium Alginate as a Stabilizer under Gamma Radiation. Radiat. Phys. Chem. 2009, 78, 251–255. [Google Scholar] [CrossRef]
- Lim, G.-H.; Lee, S.J.; Han, I.; Bok, S.; Lee, J.H.; Nam, J.; Cho, J.H.; Lim, B. Polyol Synthesis of Silver Nanostructures: Inducing the Growth of Nanowires by a Heat-up Process. Chem. Phys. Lett. 2014, 602, 10–15. [Google Scholar] [CrossRef]
- Skrabalak, S.E.; Wiley, B.J.; Kim, M.; Formo, E.V.; Xia, Y. On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent. Nano Lett. 2008, 8, 2077–2081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Song, Y.-J.; Zhang, X.-Y.; Wu, J.-Y. Synthesis of Silver Nanostructures by Multistep Methods. Sensors 2014, 14, 5860–5889. [Google Scholar] [CrossRef] [PubMed]
- Hocking, T.P.A.; O’Connor, A.J. In situ Formation of Antimicrobial Silver Nanoparticles and the Impregnation of Hydrophobic Polycaprolactone Matrix for Antimicrobial Medical Device Applications. Mater. Sci. Eng. C 2015, 47, 63–69. [Google Scholar] [CrossRef]
- Das, R.; Gang, S.; Nath, S.S. Preparation and Antibacterial Activity of Silver Nanoparticles. J. Biomater. Nanobiotechnol. 2011, 2, 472–475. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Hu, A.M.; Zhang, T.; Lei, W.; Xue, X.J.; Zhou, Y.H.; Duley, W.W. Self-Assembly of Large-Scale and Ultrathin Silver Nanoplate Films with Tunable Plasmon Resonance Properties. ACS Nano 2011, 5, 9082–9092. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Huh, Y.M.; Yoon, D.S.; Yang, J. Nanobiosensors Based on Localized Surface Plasmon Resonance for Biomarker Detection. J. Nanomater. 2012, 2012, 759830. [Google Scholar] [CrossRef]
- Cao, Y.; Li, D.; Jiang, F.; Yang, Y.; Huang, Z. Engineering Metal Nanostructure for SERS Application. J. Nanomater. 2013, 2013, 123812. [Google Scholar] [CrossRef]
- Botta, R.; Upender, G.; Sathyavathi, R.; Rao, D.N.; Bansal, C. Silver Nanoclusters Films for Single Molecule Detection using Surface Enhanced Raman Scattering (SERS). Mater. Chem. Phys. 2013, 137, 699–703. [Google Scholar] [CrossRef]
- Muhammad, F.; Wang, A.; Miao, L.; Wang, P.; Li, Q.; Liu, J.; Du, J.; Zhu, G. Synthesis of Oxidant Prone Nanosilver to Develop H2O2 Responsive Drug Delivery System. Langmuir 2015, 31, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Chen, J.; Qi, X.; Chen, G.; Peng, F.; Sun, R. Fabrication of Biopolymer Hydrogel Containing Ag Nanoparticles for Antibacterial Property. Ind. Eng. Chem. Res. 2015, 54, 7393–7400. [Google Scholar] [CrossRef]
- Nejad, A.G.; Unnithan, A.R.; Sasikala, A.R.K.; Samarikhalaj, M.; Thomas, R.G.; Jeong, Y.Y.; Nasseri, S.; Murugesan, P.; Wu, D.; Park, C.H.; et al. Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application. ACS Appl. Mater. Interfaces 2015, 7, 12176–12183. [Google Scholar] [CrossRef]
- Fujiwara, K.; Sotiriou, G.A.; Pratsinis, S.E. Enhanced Ag+ Ion Release from Aqueous Nanosilver Suspensions by Absorption of Ambient CO2. Langmuir 2015, 31, 5284–5290. [Google Scholar] [CrossRef] [PubMed]
- D'Amato, R.; Fratoddi, I.; Cappotto, A.; Altamura, P.; Delfini, M.; Bianchetti, C.; Bolasco, A.; Polzonetti, G.; Russo, M.V. Organometallic Platinum(II) and Palladium(II) Polymers Containing 2,6-Diethynyl-4-Nitroaniline Bridging Spacer and Related Dinuclear Model Complexes. Organometallics 2004, 23, 2860–2869. [Google Scholar] [CrossRef]
- Fratoddi, I.; Battocchio, C.; Groia, A.L.; Russo, M.V. Nanostructured Polymetallaynes of Controlled Length: Synthesis and Characterization of Oligomers and Polymers from 1,1′-Bis-(Ethynyl)4,4′-Biphenyl Bridging Pt(II) or Pd(II) Centres. J. Polym. Sci. A Polym. Chem. 2007, 45, 3311–3329. [Google Scholar] [CrossRef]
- Vitaliano, R.; Fratoddi, I.; Venditti, I.; Roviello, G.; Battocchio, C.; Polzonetti, G.; Russo, M.V. Self-Assembled Monolayers Based on Pd-Containing Organometallic Thiols: Preparation and Structural Characterization. J. Phys. Chem. A 2009, 113, 14730–14740. [Google Scholar] [CrossRef] [PubMed]
- Battocchio, C.; Fratoddi, I.; Russo, M.V.; Polzonetti, G. NEXAFS Study of a Pt-Containing Rod-Like Organometallic Polymer (Pt-DEBP): Molecular Orientation onto Hopg, Au/Si(111), Cr/Si(111) and Si(111) Surfaces. Chem. Phys. Lett. 2004, 400, 290–295. [Google Scholar] [CrossRef]
- Bearzotti, A.; Fratoddi, I.; Palummo, L.; Petrocco, S.; Furlani, A.; Lo Sterzo, C.; Russo, M.V. Highly Ethynylated Polymers: Synthesis and Applications for Humidity Sensors. Sens. Actuators B 2001, 76, 316–321. [Google Scholar] [CrossRef]
- Fratoddi, I.; Altamura, P.; Bearzotti, A.; Furlani, A.; Russo, M.V. Electrical and Morphological Characterization of Poly(Monosubstituted) Acetylene Based Membranes: Application as Humidity and Organic Vapours Sensors. Thin Solid Films 2004, 458, 292–298. [Google Scholar] [CrossRef]
- Battocchio, C.; Porcaro, F.; Mukherjee, S.; Magnano, E.; Nappini, S.; Fratoddi, I.; Quintiliani, M.; Russo, M.V.; Polzonetti, G. Gold Nanoparticles Stabilized with Aromatic Thiols: Interaction at the Molecule-Metal Interface and Structure of the Molecular Shell Investigated by SR-XPS and NEXAFS. J. Phys. Chem. C 2014, 118, 8159–8168. [Google Scholar] [CrossRef]
- Vitale, F.; Mirenghi, L.; Piscopiello, E.; Pellegrini, G.; Trave, E.; Mattei, G.; Fratoddi, I.; Russo, M.V.; Tapfer, L.; Mazzoldi, P. Gold Nanosclusters—Organometallic Polymer Nanocomposites: Synthesis and Characterization. Mater. Sci. Eng. C 2007, 27, 1300–1304. [Google Scholar] [CrossRef]
- Vitale, F.; Fratoddi, I.; Battocchio, C.; Piscopiello, E.; Tapfer, L.; Russo, M.V.; Polzonetti, G.; Giannini, C. Mono and Bifunctional Arenethiols as Surfactants for Gold Nanoparticles: Synthesis and Characterization. Nanoscale Res. Lett. 2011, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Bassetti, M.; Battocchio, C.; Venditti, I.; Fratoddi, I. Synthesis of Gold and Silver Nanoparticles Functionalized with Organic Dithiols. Colloids Surf. A 2017, 532, 282–289. [Google Scholar] [CrossRef]
- Quintiliani, M.; Bassetti, M.; Pasquini, C.; Battocchio, C.; Rossi, M.; Mura, F.; Matassa, R.; Fontana, L.; Russo, M.V.; Fratoddi, I. Network Assembly of Gold Nanoparticles Linked Through Fluorenyl Dithiol Bridge. J. Mater. Chem. C 2014, 2, 2517–2527. [Google Scholar] [CrossRef]
- Fontana, L.; Fratoddi, I.; Venditti, I.; Ksenzov, D.; Russo, M.V.; Grigorian, S. Structural Studies on Drop-Cast Film Based on Functionalized Gold Nanoparticles Network: The Effect of Heating Treatment. Appl. Surf. Sci. 2016, 369, 115–119. [Google Scholar] [CrossRef]
- Fontana, L.; Fratoddi, I.; Venditti, I.; Matassa, R.; Familiari, G.; Battocchio, C.; Magnano, E.; Nappini, S.; Leahu, G.; Belardini, A.; et al. Noble Metal Functionalized Nanoparticles Based Networks as Advanced Optoelectronic Materials. J. Phys. Chem. C 2017, 121, 18110–18119. [Google Scholar] [CrossRef]
- Vitale, F.; Vitaliano, R.; Battocchio, C.; Fratoddi, I.; Piscopiello, E.; Tapfer, L.; Russo, M.V. Synthesis and Characterization of Gold Nanoparticles Stabilized by Palladium(II) Phosphine Thiol. J. Organomet. Chem. 2008, 603, 1043–1048. [Google Scholar] [CrossRef]
- Vitale, F.; Vitaliano, R.; Battocchio, C.; Fratoddi, I.; Giannini, C.; Piscopiello, E.; Guagliardi, A.; Cervellino, A.; Polzonetti, G.; Russo, M.V.; et al. Synthesis and Microstructural Investigations of Organometallic Pd(II) Thiol-Gold Nanoparticles Hybrids. Nanoscale Res. Lett. 2008, 3, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Matassa, R.; Familiari, G.; Battaglione, E.; Sibilia, C.; Lehau, G.; Belardini, A.; Venditti, I.; Fontana, L.; Fratoddi, I. Electron Microscopy Reveals Soluble Hybrid Network of Individual Nanocrystal Self-Anchored by Bifunctional Thiol Fluorescent Bridges. Nanoscale 2016, 8, 18161–18169. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Cametti, C.; Russo, M.V. Core Shell Hybrids Based on Noble Metal Nanoparticles and Conjugated Polymers: Synthesis and Characterization. Nanoscale Res. Lett. 2011, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Iglesias, A.; Grzelczak, M.; Altantzis, T.; Goris, B.; Perez-Juste, J.; Bals, S.; Van Tendeloo, G.; Donaldson, S.H., Jr.; Chmelka, B.F.; Israelachvili, J.N.; et al. Hydrophobic Interactions Modulate Self-assembly of Nanoparticles. ACS Nano 2012, 6, 11059–11065. [Google Scholar] [CrossRef] [PubMed]
- Brancolini, G.; Toroz, D.; Corni, S. Can Small Hydrophobic Gold Nanoparticles Inhibit β2-Microglobulin Fibrillation? Nanoscale 2012, 6, 7903–7911. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lee, N.-E.; Lee, E.; Yoon, S. Surface Modification of Citrate-Capped Gold Nanoparticles Using CTAB Micelles. Bull. Korean Chem. Soc. 2014, 35, 2567–2569. [Google Scholar] [CrossRef]
- Hickey, R.J.; Seo, M.; Luo, Q.; Park, S.-J. Directional Self-Assembly of Ligand-Stabilized Gold Nanoparticles into Hollow Vesicles Through Dynamic Ligand Rearrangement. Langmuir 2014, 31, 4299–4304. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Wei, J.; Iida, R.; Ijiro, K.; Niikura, K. Surface Engineering of Nanoparticles for Therapeutic Applications. Polym. J. 2014, 46, 460–468. [Google Scholar] [CrossRef]
- Khanna, P.; Ong, C.; Huat Bay, B.; Baeg, H. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials 2015, 5, 1163–1180. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. The Puzzle of Toxicity of Gold Nanoparticles. The Case-study of HeLa Cells. Toxicol. Res. 2015, 4, 796–800. [Google Scholar] [CrossRef]
- Wu, R.H.; Nguyen, T.P.; Marquart, G.W.; Miesen, T.J.; Mau, T.; Mackiewicz, M.R. A Facile Route to Tailoring Peptide-Stabilized Gold Nanoparticles Using Glutathione as a Synthon. Molecules 2014, 19, 6754–6775. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Parak, W.J. Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles. Philos. Trans. R. Soc. Lond. A 2010, 368, 1333–1383. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, D.; Yang, D.; Jiang, M. Fabrication of Flower-Like Silver Structures Through Anisotropic Growth. Langmuir 2011, 27, 6211–6217. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M.; Ogino, M.; Matsuo, R.; Kumagae, H.; Hikino, S.; Kim, T.; Yoon, S.H. Stepwise Growth of Decahedral and Icosahedral Silver Nanocrystals in DMF. Cryst. Growth Des. 2010, 10, 296–301. [Google Scholar] [CrossRef]
- Tsuji, M.; Gomi, S.; Maeda, Y.; Matsunaga, M.; Hikino, S.; Uto, K.; Tsuji, T.; Kawazumi, H. Rapid Transformation from Spherical Nanoparticles, Nanorods, Cubes, or Bipyramids to Triangular Prisms of Silver with PVP, Citrate and H2O2. Langmuir 2012, 28, 8845–8861. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.J.; Wang, M.L.; Zhang, X.Y.; Wu, J.Y.; Zhang, T. Investigation on the Role of the Molecular Weight of Polyvinyl Pyrrolidone in the Shape Control of High-Yield Silver Nanospheres and Nanowires. Nanoscale Res. Lett. 2014, 9, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Chen, C.H.; Wu, R.J. Facile Growth of Silver Crystals with Greatly Varied Morphologies by PEO-PPO-PEO Tri-Block Copolymers. CrystEngComm 2012, 14, 2871–2878. [Google Scholar] [CrossRef]
- Goh, M.S.; Lee, Y.H.; Pedireddy, S.; Phang, I.Y.; Tjiu, W.W.; Tan, J.M.; Ling, X.Y. A Chemical Route to Increase Hot Spots on Silver Nanowires for Surface-Enhanced Raman Spectroscopy Application. Langmuir 2012, 28, 14441–14449. [Google Scholar] [CrossRef] [PubMed]
- Battocchio, C.; Meneghini, C.; Fratoddi, I.; Venditti, I.; Russo, M.V.; Aquilanti, G.; Maurizio, C.; Bondino, F.; Matassa, R.; Rossi, M.; et al. Silver Nanoparticles Stabilized with Thiols: A Close Look to the Local Chemistry and Atomic Structure. J. Phys. Chem. C 2012, 116, 19571–19578. [Google Scholar] [CrossRef]
- Matassa, R.; Fratoddi, I.; Rossi, M.; Battocchio, C.; Caminiti, R.; Russo, M.V. Two-Dimensional Networks of Ag Nanoparticles Bridged by Organometallic Ligand. J. Phys. Chem. C 2012, 116, 15795–15800. [Google Scholar] [CrossRef]
- Battocchio, C.; Fratoddi, I.; Fontana, L.; Bodo, E.; Porcaro, F.; Meneghini, C.; Pis, I.; Nappini, S.; Mobilio, S.; Russo, M.V.; et al. Silver Nanoparticles Linked by Pt-Containing Organometallic Dithiol Bridge: Study on Local Structure and Interface by XAFS and SR-XPS. Phys. Chem. Chem. Phys. 2014, 16, 11719–11728. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Bondino, F.; Malvestuto, M.; Piscopiello, E.; Tapfer, L.; Russo, M.V. Gold Nanoparticles Dyads Stabilized With Binuclear Pt(II) Dithiol Bridges. J. Phys. Chem. C 2011, 115, 15198–15204. [Google Scholar] [CrossRef]
- Gautier, J.; Allard-Vannier, E.; Herve-Aubert, K.; Souce, M.; Chourpa, I. Design Strategies of Hybrid Metallic Nanoparticles for Theragnostic Applications. Nanotechnology 2013, 24, 432002. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Gold Nanoparticles and Gold Nanoparticle-Conjugates as Drug Delivery Vehicles. Progress and Challenges. J. Mater. Chem. B 2014, 2, 4204–4220. [Google Scholar] [CrossRef]
- Cametti, C.; Fratoddi, I.; Venditti, I.; Russo, M.V. Dielectric Relaxations of Ionic Thiol-Coated Noble Metal Nanoparticles in Aqueous Solutions: Electrical Characterization of the Interface. Langmuir 2011, 27, 7084–7090. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Palocci, C.; Chronopoulou, L.; Fratoddi, I.; Fontana, L.; Diociaiuti, M.; Russo, M.V. Candida Rugosa Lipase Immobilization on Hydrophilic Charged Gold Nanoparticles as Promising Biocatalysts: Activity and Stability Investigations. Colloids Surf. B 2015, 131, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Testa, G.; Sciubba, F.; Carlini, L.; Porcaro, F.; Meneghini, C.; Mobilio, S.; Battocchio, C.; Fratoddi, I. Hydrophilic Metal Nanoparticles Functionalized by 2-Diethylaminoethanethiol: A Close Look at the Metal–Ligand Interaction and Interface Chemical Structure. J. Phys. Chem. C 2017, 121, 8002–8013. [Google Scholar] [CrossRef]
- Paczesny, J.; Wójcik, M.; Sozański, K.; Nikiforov, K.; Tschierske, C.; Lehmann, A.; Górecka, E.; Mieczkowski, J.; Hołyst, R. Self-Assembly of Gold Nanoparticles into 2D Arrays Induced by Bolaamphiphilic Ligands. J. Phys. Chem. C 2013, 117, 24056–24062. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Shin, S.H.R.; Abezgauz, L.L.; Lewis, S.A.; Chirsan, A.M.; Danino, D.D.; Bishop, K.J.M. Integration of Gold Nanoparticles into Bilayer Structures via Adaptive Surface Chemistry. J. Am. Chem. Soc. 2013, 115, 5950–5953. [Google Scholar] [CrossRef] [PubMed]
- Iida, R.; Kawamura, H.; Niikura, K.; Kimura, T.; Sekiguchi, S.; Joti, Y.; Bessho, Y.; Mitomo, H.; Nishino, Y.; Ijiro, K. Synthesis of Janus-Like Gold Nanoparticles with Hydrophilic/Hydrophobic Faces by Surface Ligand Exchange and Their Self-Assemblies in Water. Langmuir 2015, 31, 4054–4062. [Google Scholar] [CrossRef] [PubMed]
- Terborg, L.; Masini, J.C.; Lin, M.; Lipponen, K.; Riekolla, M.L.; Svec, F. Porous Polymer Monolithic Columns with Gold Nanoparticles as an Intermediate Ligand for the Separation of Proteins in Reverse Phase-Ion Exchange Mixed Mode. J. Adv. Res. 2015, 6, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Aldeek, F.; Ji, X.; Zeng, B.; Mattoussi, H. A Multifunctional Amphiphilic Polymer as a Platform for Surface-Functionalizing Metallic and Other Inorganic Nanostructures. Faraday Discuss. 2014, 175, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Hassanein, T.F.; Fratoddi, I.; Fontana, L.; Battocchio, C.; Rinaldi, F.; Carafa, I.; Marianecci, C.; Diociaiuti, M.; Agostinelli, E.; et al. Bioconjugation of Gold-Polymer Core-Shell Nanoparticles with Bovine Serum Amino Oxidase for Biomedical Applications. Colloids Surf. B 2015, 134, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Furlani, A.; Altamura, P.; Fratoddi, I.; Polzonetti, G. Synthesis and Xps Characterisation of Organometallic Pd Containing Polymers from Monosubstituted Acetylenes. Polymer 1997, 38, 3677–3690. [Google Scholar] [CrossRef]
- Liu, X.; Huang, N.; Wang, H.; Li, H.; Jin, Q.; Ji, J. The Effect of Ligand Composition on the in Vivo Fate of Multidentate Poly(ethylene Glycol) Modified Gold Nanoparticles. Biomaterials 2013, 34, 8370–8381. [Google Scholar] [CrossRef] [PubMed]
- Shon, H.K.; Kim, S.J.; Park, H.M.; Moon, D.W.; Song, N.W.; Lee, T.G. Characterization of PEG-Conjugated Gold Nanoparticles Using a Statistical Analysis on Time-of-Flight SIMS Images. Surf. Interface Anal. 2013, 45, 225–229. [Google Scholar] [CrossRef]
- Hinterwirth, H.; Kappel, S.; Waitz, T.; Prohaska, T.; Lindner, W.; Lammerhofer, M. Quantifying Thiol Ligand Density of Self-Assembled Monolayers on Gold Nanoparticles by Inductively Coupled Plasma Mass Spectrometry. ACS Nano 2013, 7, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J.E. Structure and Binding of Alkenothiolates on Gold and Silver Surfaces, Implications for Self-Assembled Monolayers. J. Am. Chem. Soc. 1993, 115, 9389–9403. [Google Scholar] [CrossRef]
- Pradeep, T.; Sandhyarani, N. Structure and Dynamics of Monolayers on Planar and Cluster Surfaces. Pure Appl. Chem. 2002, 74, 1593–1608. [Google Scholar] [CrossRef]
- Tambasco, M.; Kumar, S.K.; Szleifer, I. Quantitatively Modeling of Equilibrium Properties of Thiol Decorated Gold Nanoparticles. Langmuir 2008, 24, 8448–8451. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Doane, T.L.; Cheng, Y.; Lu, F.; Srinivasan, S.; Zhu, J.-J.; Burda, C. Control of Surface Ligand Density on PEGylated Gold Nanoparticles for Optimized Cancer Cell Uptake. Part. Part. Syst. Charact. 2015, 32, 197–204. [Google Scholar] [CrossRef]
- Kunstmann-Olsen, C.; Belić, D.; Brust, M. Monitoring Pattern Formation in Drying and Wetting Dispersions of Gold Nanoparticles by ESEM. Faraday Discuss. 2015, 181, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fontana, L.; Fratoddi, I.; Battocchio, C.; Cametti, C.; Sennato, S.; Mura, F.; Sciubba, F.; Delfini, M.; Russo, M.V. Direct Interaction of Hydrophilic Gold Nanoparticles with Dexamethasone Drug: Loading and Release Study. J. Colloid Interface Sci. 2014, 418, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Donati, S.; Fontana, L.; Porcaro, F.; Battocchio, C.; Proietti, E.; Venditti, I.; Bracci, L.; Fratoddi, I. Negatively Charged Gold Nanoparticles as Dexamethasone Carrier: Stability in Biological Media and Bioactivity Assessment in Vitro. RSC Adv. 2016, 6, 99016–99022. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Palocci, C.; Chronopoulou, L.; Marino, M.; Acconcia, F.; Russo, M.V. Functional Polymeric Nanoparticles for Dexamethasone Loading and Release. Colloids Surf. B 2012, 93, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Fang, Z.; Wang, C.; Zhou, J.; Duan, B.; Pu, L.; Duan, H. Photolabile Plasmonic Vesicles Assembled from Amphiphilic Gold Nanoparticles for Remote-Controlled Traceable Drug Delivery. Nanoscale 2013, 5, 5816–5822. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Echeverría, M.; Moya, S.; Ruiz, J.; Astruc, D. Click Synthesis of Nona-PEG-branched Triazole Dendrimers and Stabilization of Gold Nanoparticles That Efficiently Catalyze p-Nitrophenol Reduction. Inorg. Chem. 2014, 53, 6954–6961. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold Nanoparticles for Nucleic Acid Delivery. Mol. Ther. 2014, 22, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Niikura, K.; Kobayashi, K.; Takeuchi, C.; Fujitani, N.; Takahara, S.; Ninomiya, T.; Hagiwara, K.; Mitomo, H.; Ito, Y.; Osada, Y.; et al. Amphiphilic Gold Nanoparticles Displaying Flexible Bifurcated Ligands as a Carrier for siRNA Delivery into the Cell Cytosol. ACS Appl. Mater. Interfaces 2014, 6, 22146–22154. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Hosokawa, K.; Maeda, M. Rapid Aggregation of Gold Nano-Particles Induced by Non-Cross-Linking DNA Hybridization. J. Am. Chem. Soc. 2003, 125, 8102–8103. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Rothberg, L. Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold Nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 14036–14039. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.M.; Nandini, S.; Chari, S.; Han, G.; Hong, R.; Ghosh, P.; Rotello, V.M. DNA-Binding by Functionalized Gold Nanoparticles: Mechanism and Structural Requirements. Chem. Biol. Drug Des. 2006, 67, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Yu, L.; Gao, P.; Cai, Y.; Wei, Y. Detection of Protein—DNA Interaction and Regulation Using Gold Nanoparticles. Anal. Biochem. 2010, 399, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Prado-Gotor, R.; Grueso, E. A Kinetic Study of the Interaction of DNA with Gold Nanoparticles: Mechanistic Aspects of the Interaction. Phys. Chem. Chem. Phys. 2013, 13, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Diao, J.J.; Tang, Z.; Liu, S.; Shen, S.C.; Liu, J.; Rui, X.; Yu, D.; Zhao, Q. Gold Nanoparticle Wires for Sensing DNA and DNA/Protein Interactions. Nanoscale 2014, 6, 4089–4095. [Google Scholar] [CrossRef] [PubMed]
- Vossmeyer, T.; Guse, B.; Besnard, I.; Bauer, R.E.; Mullen, K.; Yasuda, A. Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties. Adv. Mater. 2002, 14, 238–242. [Google Scholar] [CrossRef]
- Deniz, A.E.; Vural, H.A.; Ortaç, B.; Uyar, T. Gold Nanoparticle/Polymer Nanofibrous Composites by Laser Ablation and Electrospinning. Mater. Lett. 2011, 2941–2943. [Google Scholar] [CrossRef]
- Byun, H. Gold Nanoparticles-Poly(N-isopropylacrylamide) Composites Exhibiting Optically Induced Reversible Properties. J. Nanosci. Nanotechnol. 2015, 15, 5035–5041. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Singh, G.; Biradar, A.M. Advances in Gold Nanoparticle–Liquid Crystal Composites. Nanoscale 2014, 6, 7743–7756. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fratoddi, I.; Russo, M.V.; Bearzotti, A. Nanostructured Composite Based on Polyaniline and Gold Nanoparticles: Synthesis and Gas Sensing Properties. Nanotechnology 2013, 14, 155503. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Macagnano, A.; Battocchio, C.; Zampetti, E.; Venditti, I.; Russo, M.V.; Bearzotti, A. Platinum Nanoparticles on Electrospun Titania Nanofibers as Hydrogen Sensing Materials Working at Room Temperature. Nanoscale 2014, 6, 9177–9184. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Kawakami, H.; Narushima, T.; Yonezawa, T. Selective and Reactive Hydration of Nitriles to Amides in Water using Silver Nanoparticles Stabilized by Organic Ligands. J. Nanopart. Res. 2015, 17, 1–9. [Google Scholar] [CrossRef]
- Ahmed, T.; Imdad, S.; Ashraf, S.; Butt, N.M. Effect of Size and Surface Ligands of Silver (Ag) Nanoparticles on Waterborne Bacteria. Int. J. Theor. Appl. Nanotechnol. 2012, 1, 111–116. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratoddi, I. Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives. Nanomaterials 2018, 8, 11. https://doi.org/10.3390/nano8010011
Fratoddi I. Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives. Nanomaterials. 2018; 8(1):11. https://doi.org/10.3390/nano8010011
Chicago/Turabian StyleFratoddi, Ilaria. 2018. "Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives" Nanomaterials 8, no. 1: 11. https://doi.org/10.3390/nano8010011
APA StyleFratoddi, I. (2018). Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives. Nanomaterials, 8(1), 11. https://doi.org/10.3390/nano8010011