Preparation and Application of Hybrid Nanomaterials
Funding
Acknowledgments
Conflicts of Interest
References
- Loy, D.A.; Shea, K.J. Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chem. Rev. 1995, 95, 1431–1442. [Google Scholar] [CrossRef]
- Díaz, U.; Brunel, D.; Corma, A. Catalysis using multifunctional organosiliceous hybrid materials. Chem. Soc. Rev. 2013, 42, 4083–4097. [Google Scholar] [CrossRef] [PubMed]
- Hayami, R.; Wada, K.; Nishikawa, I.; Sagawa, T.; Yamamoto, K.; Tsukada, S.; Gunji, T. Preparation and properties of organic–inorganic hybrid materials using titanium phosphonate cluster. Polym. J. 2017, 49, 665–669. [Google Scholar] [CrossRef]
- Soliveri, G.; Annunziata, R.; Ardizzone, S.; Cappelletti, G.; Meroni, D. Multiscale Rough Titania Films with Patterned Hydrophobic/Oleophobic Features. J. Phys. Chem. C 2012, 116, 26405–26413. [Google Scholar] [CrossRef]
- Diaz, U.; Corma, A. Organic-Inorganic Hybrid Materials: Multi-Functional Solids for Multi-Step Reaction Processes. Chem. Eur. J. 2018, 24, 3944–3958. [Google Scholar] [CrossRef] [PubMed]
- Meroni, D.; Ardizzone, S.; Schubert, U.S.; Höppener, S. Probe-Based Electro-Oxidative Lithography of OTS SAMs Deposited onto Transparent ITO Substrates. Adv. Funct. Mater. 2012, 22, 4376–4382. [Google Scholar] [CrossRef]
- Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696–753. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.; Dragonetti, C.; Magni, M.; Meroni, D.; Ugo, R.; Marotta, G.; Lobello, M.G.; Salvatori, P.; De Angelis, F. New thiocyanate-free ruthenium(II) sensitizers with different pyrid-2-yl tetrazolate ligands for dye-sensitized solar cells. Dalton Trans. 2015, 44, 11788–11796. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.-W.; Verbruggen, S.W.; Claes, N.; Yadav, A.; Grandjean, D.; Bals, S.; Lievens, P. TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light. Nanomaterials 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Panzarasa, G.; Osypova, A.; Consolati, G.; Quasso, F.; Soliveri, G.; Ribera, J.; Schwarze, F.W.M.R. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification. Nanomaterials 2018, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Zhang, W.; Cao, S.; Wang, G.; Zhou, Z. Carbon-Based Fe3O4 Nanocomposites Derived from Waste Pomelo Peels for Magnetic Solid-Phase Extraction of 11 Triazole Fungicides in Fruit Samples. Nanomaterials 2018, 8, 302. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, J.; Hao, H.; Wang, T. Magnetically Separable MoS2/Fe3O4/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr(VI) and 4-Chlorophenol. Nanomaterials 2017, 7, 303. [Google Scholar] [CrossRef] [PubMed]
- Desmecht, A.; Steenhaut, T.; Pennetreau, F.; Hermans, S.; Riant, O. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube–Polyamidoamine Dendrimer Hybrids. Chem. Eur. J. 2018, 24, 12992–13001. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.B. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev. 2015, 115, 2483–2531. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Sabaraya, I.V.; Sabo-Attwood, T.; Saleh, N.B. Insights into Metal Oxide and Zero-Valent Metal Nanocrystal Formation on Multiwalled Carbon Nanotube Surfaces during Sol-Gel Process. Nanomaterials 2018, 8, 403. [Google Scholar] [CrossRef] [PubMed]
- Sansotera, M.; Talaeemashhadi, S.; Gambarotti, C.; Pirola, C.; Longhi, M.; Ortenzi, M.A.; Navarrini, W.; Bianchi, C.L. Comparison of Branched and Linear Perfluoropolyether Chains Functionalization on Hydrophobic, Morphological and Conductive Properties of Multi-Walled Carbon Nanotubes. Nanomaterials 2018, 8, 176. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Jiao, C.; Majeed, Z.; Jiang, H. Magnesium and Nitrogen Co-Doped Mesoporous Carbon with Enhanced Microporosity for CO2 Adsorption. Nanomaterials 2018, 8, 275. [Google Scholar] [CrossRef] [PubMed]
- Truong, J.; Hansen, M.; Szychowski, B.; Xie, T.; Daniel, M.-C.; Hahm, J. Spatially Correlated, Single Nanomaterial-Level Structural and Optical Profiling of Cu-Doped ZnO Nanorods Synthesized via Multifunctional Silicides. Nanomaterials 2018, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Predoi, D.; Iconaru, S.L.; Buton, N.; Badea, M.L.; Marutescu, L. Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite. Nanomaterials 2018, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Batool, F.; Strub, M.; Petit, C.; Bugueno, I.M.; Bornert, F.; Clauss, F.; Huck, O.; Kuchler-Bopp, S.; Benkirane-Jessel, N. Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications. Nanomaterials 2018, 8, 337. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Velázquez, A.R.; Velasco-Soto, M.A.; Pérez-García, S.A.; Licea-Jiménez, L. Functionalization Effect on Polymer Nanocomposite Coatings Based on TiO2–SiO2 Nanoparticles with Superhydrophilic Properties. Nanomaterials 2018, 8, 369. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, J.; Qin, C.; Zhang, B.; Sun, G.; Zhang, Z. Synthesis and Enhanced Ethanol Gas Sensing Properties of the g-C3N4 Nanosheets-Decorated Tin Oxide Flower-Like Nanorods Composite. Nanomaterials 2017, 7, 285. [Google Scholar] [CrossRef] [PubMed]
- Jodłowski, P.J.; Jedrzejczyk, R.J.; Chlebda, D.K.; Dziedzicka, A.; Kuterasinski, Ł.; Gancarczyk, A.; Sitarz, M. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation. Nanomaterials 2017, 7, 174. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-M.; Hwang, B.-Y.; Lee, K.-W.; Kim, J.-Y. Ambient-Stable and Durable Conductive Ag-Nanowire-Network 2-D Films Decorated with a Ti Layer. Nanomaterials 2018, 8, 321. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, W.; Chen, G.; Liu, L.; He, Z.; Liu, R. The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials 2018, 8, 356. [Google Scholar] [CrossRef] [PubMed]
- National Renewable Energy Laboratory (NREL) Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf (accessed on 23 October 2018).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meroni, D.; Ardizzone, S. Preparation and Application of Hybrid Nanomaterials. Nanomaterials 2018, 8, 891. https://doi.org/10.3390/nano8110891
Meroni D, Ardizzone S. Preparation and Application of Hybrid Nanomaterials. Nanomaterials. 2018; 8(11):891. https://doi.org/10.3390/nano8110891
Chicago/Turabian StyleMeroni, Daniela, and Silvia Ardizzone. 2018. "Preparation and Application of Hybrid Nanomaterials" Nanomaterials 8, no. 11: 891. https://doi.org/10.3390/nano8110891
APA StyleMeroni, D., & Ardizzone, S. (2018). Preparation and Application of Hybrid Nanomaterials. Nanomaterials, 8(11), 891. https://doi.org/10.3390/nano8110891