Enhancing GaN LED Efficiency through Nano-Gratings and Standing Wave Analysis
Abstract
:1. Introduction
2. GaN LED Grating Simulation with the Error Grating Model
2.1. Basic Structure of GaN LED
2.2. Error Grating Model
3. Results
3.1. Top ITO Layer with/without Grating Using Standing Wave Analysis
3.2. Nano-patterned Sapphire Substrates (PSS) Bottom Grating, SiO2 Nano-rod Grating (NR), and Ag Reflector
- (a)
- Conventional LED (CLED);
- (b)
- conventional LED with Ag between U-GaN and a sapphire substrate;
- (c)
- conventional LED with Ag below a sapphire substrate;
- (d)
- LED with an SiO2 nanorod (NR)) array;
- (e)
- LED with a patterned sapphire substrate (PSS);
- (f)
- LED with a PSS and NR array (PSS NR);
- (g)
- LED with PSS, Ag between U-GaN, and a sapphire substrate;
- (h)
- LED with an NR array, Ag between U-GaN, and a sapphire substrate;
- (i)
- LED with PSS, Ag below a sapphire substrate;
- (j)
- LED with NR array, Ag below a sapphire substrate;
- (k)
- LED with PSS, NR array, and Ag between U-GaN and a sapphire substrate; and
- (l)
- LED with PSS, NR array, and Ag below a sapphire substrate.
3.3. Nano-top Grating Performance over Different Wavelength
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wei, T.; Kong, Q.; Wang, J.; Jing, L. Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands. Opt. Express 2011, 19, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.; Kang, X.N.; Zhang, B.; Dai, T.; Sun, Y.J.; Fu, Q.; Lian, G.J.; Xiang, G.C.; Zhang, G.Y.; Chen, Y. Improvement of light extraction from GaN-based thin-film light-emitting diodes by patterning undoped GaN using modified laser lift-off. Appl. Phys. Lett. 2008, 92, 141104. [Google Scholar] [CrossRef]
- Cho, C.Y.; Kang, S.E.; Kim, K.S.; Lee, S.J.; Choi, Y.S.; Han, S.H.; Jung, G.Y.; Park, S.J. Enhanced light extraction in light-emitting diodes with photonic crystal structure selectively grown on p-GaN. Appl. Phys. Lett. 2010, 96, 181110. [Google Scholar] [CrossRef]
- Yang, G.F.; Xie, F.; Tong, Y.Y.; Chen, P.; Yu, Z.G.; Yan, D.W.; Xue, J.J.; Zhu, H.X.; Guo, Y.; Li, G.H.; et al. Formation of nanorod InGaN/GaN multiple quantum wells using nickel nano-masks and dry etching for InGaN-based light emitting diodes. Mat. Sci. Semicon. Proc. 2015, 30, 694–706. [Google Scholar] [CrossRef]
- Trieu, S.; Jin, X. Study of Top and Bottom Photonic Gratings on GaN LED with Error Grating Models. IEEE J. Quantum Electron. 2010, 46, 896–901. [Google Scholar] [CrossRef]
- Lin, W.Y.; Wuu, D.S.; Huang, S.C.; Horng, R.H. Enhanced output power of near-ultraviolet InGaN/AlGaN LEDs with patterned distributed Bragg reflectors. IEEE Trans. Electron Dev. 2011, 58, 173–179. [Google Scholar] [CrossRef]
- Kuo, C.W.; Lee, Y.C.; Fu, Y.K.; Tsai, C.H.; Wu, M.L.; Chi, G.C.; Kuo, C.H.; Tun, C.J. Optical Simulation and Fabrication of Nitride-Based LEDs with the Inverted Pyramid Sidewalls. IEEE J. Sel. Top. Quant. 2009, 15, 1264–1268. [Google Scholar] [CrossRef]
- Bao, K.; Kang, X.N. Improvement of Light Extraction from Patterned Polymer Encapsulated GaN-Based Flip-Chip Light-Emitting Diodes by Imprinting. IEEE Photonics Technol. Lett. 2007, 19, 1840–1842. [Google Scholar] [CrossRef]
- Ryu, H.; Shim, J. Structural Parameter Dependence of Light Extraction Efficiency in Photonic Crystal InGaN Vertical Light-Emitting Diode Structures. IEEE J. Quantum Electron. 2010, 46, 714–720. [Google Scholar]
- Halpin, G.; Robinson, T.; Jin, X.; Kang, X.N.; Zhang, G.Y. Study of GaN LED ITO Nano-Gratings With Standing Wave Analysis. IEEE Photonics J. 2014, 6, 4500210. [Google Scholar] [CrossRef]
- Shei, S.C. Multiple Nanostructures on Full Surface of GZO/GaN-Based LED to Enhance Light-Extraction Efficiency Using a Solution-Based Method. IEEE J. Quantum Electron. 2014, 50, 629–632. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, W.; Wan, W.; Chen, G.; Zhang, B.; Jin, C. Improving the Extraction Efficiency of Planar GaN-Based Blue Light-Emitting Diodes via Optimizing Indium Tin Oxide Nanodisc Arrays. J. Disp. Technol. 2016, 12, 1588–1593. [Google Scholar] [CrossRef]
- Ding, Q.A.; Li, K.; Kong, F.; Zhao, J.; Yue, Q. Improving the Vertical Light Extraction Efficiency of GaN-Based Thin-Film Flip-Chip LED with Double Embedded Photonic Crystals. IEEE J. Quantum Electron. 2015, 51, 3300109. [Google Scholar] [CrossRef]
- Dai, T.; Kang, X.; Zhang, B.; Xu, J.; Bao, K.; Xiong, C.; Gan, Z. Study and formation of 2D microstructures of sapphire by focused ion beam milling. Microelectron. Eng. 2008, 85, 640–645. [Google Scholar] [CrossRef]
- Huang, X.H.; Liu, J.P.; Fan, Y.Y.; Kong, J.J.; Yang, H.; Wang, H.B. Effect of Patterned Sapphire Substrate Shape on Light Output Power of GaN-Based LEDs. IEEE Photonics Technol. Lett. 2011, 23, 944–946. [Google Scholar] [CrossRef]
- Cui, H.; Park, S.H. Numerical simulations of light-extraction efficiencies of light-emitting diodes on micro and nanopatterned sapphire substrates. IET Micro Nano Lett. 2014, 9, 841–844. [Google Scholar] [CrossRef]
- Che, Z.; Zhang, J.; Yu, X.; Xie, M.; Yu, J.; Lu, H.; Luo, Y.; Guan, H.; Chen, Z. Improvement of light extraction efficiency of GaN-based flip-chip LEDs by a double-sided spherical cap-shaped patterned sapphire substrate. In Proceedings of the 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Sydney, Australia, 11–15 July 2016. [Google Scholar]
- Xia, C.S.; Sheng, Y.; Li, Z.M.; Cheng, L. Simulation of GaN-Based Light-Emitting Diodes with Hemisphere Patterned Sapphire Substrate Based on Poynting Vector Analysis. IEEE J. Quantum Electron. 2015, 51, 3300105. [Google Scholar] [CrossRef]
- Kim, B.J.; Jung, H.; Kim, S.H.; Bang, J.; Kim, J. GaN-Based Light-Emitting Diode with Three-Dimensional Silver Reflectors. IEEE Photonics Technol. Lett. 2009, 21, 700–702. [Google Scholar] [CrossRef]
- Jeong, T.; Kim, K.H.; Lee, H.H.; Lee, S.J.; Lee, S.H.; Baek, J.H.; Lee, J.K. Enhance Light Output Power of GaN-Based Vertical Light-Emitting Diodes by Using Highly Reflective ITO-Ag-Pt Refelctors. IEEE Photonics Technol. Lett. 2008, 20, 1932–1934. [Google Scholar] [CrossRef]
- Liou, J.K.; Chen, W.C.; Chang, C.H.; Chang, Y.C.; Tsai, J.H.; Liu, W.C. Enhanced Light Extraction of a High-Power GaN-Based Light-Emitting Diode with a Nanohemispherical Hybrid Backside Reflector. IEEE Trans. Electron Dev. 2015, 62, 3296–3301. [Google Scholar] [CrossRef]
- Jin, X.; Chavoor, G. Position of Ag reflection layer and its effect on GaN LED light extraction efficiency. In Proceedings of the 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), Roma, Italy, 27–30 July 2015. [Google Scholar]
- Tien, C.H.; Zhang, C.H.; Chung, S.H.; Ou, S.L.; Horng, R.H.; Wuu, D.S. ITO/nano-Ag plasmonic window applied for efficiency improvement of near-ultraviolet light emitting diodes. In Proceedings of the 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)], Toyama, Japan, 26–30 June 2016. [Google Scholar]
- Peng, W.C.; Wu, Y.S. Enhance performance of an InGaN-GaN light emitting diode by roughening the undoped-GaN surface and applying a mirror coating to the sapphire substrate. Appl. Phys. Lett. 2006, 88, 181117. [Google Scholar] [CrossRef]
- Chiu, C.H.; Yen, H.H.; Chao, C.L.; Li, Z.Y.; Yu, P.C. Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template. Appl. Phys. Lett. 2008, 93, 081108. [Google Scholar] [CrossRef]
- Lee, Y.L.; Liu, W.C. Enhanced Light Extraction of GaN-Based Light-Emitting Diodes with a Hybrid Structure Incorporating Microhole Arrays and Textured Sidewalls. IEEE Trans. Electron Dev. 2018, 65, 3305–3310. [Google Scholar] [CrossRef]
- Liu, H.Y.; Yang, Y.C.; Liu, G.J.; Huang, R.C. Improved Light Extraction Efficiency of GaN-Based Ultraviolet Light-Emitting Diodes by Self-Assembled MgO Nanorod Arrays. IEEE Trans. on Electron Dev. 2017, 64, 5006–5011. [Google Scholar] [CrossRef]
- Huang, J.K.; Liu, C.Y.; Chen, T.P.; Huang, H.W.; Lai, F.I.; Lee, P.T.; Lin, C.H.; Chang, C.Y.; Kao, T.S.; Kuo, H.C. Enhanced Light Extraction Efficiency of GaN-Based Hybrid Nanorods Light-Emitting Diodes. IEEE J. Sel. Top. Quant. 2015, 21, 6000107. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, K.D.; Kim, J.Y.; Kwon, M.K.; Park, S.J. Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography. TOP Nanotechnol. 2007, 18, 055306. [Google Scholar] [CrossRef]
- Hong, H.G.; Kim, S.S.; Kim, D.Y.; Lee, T.; Song, J.O.; Cho, J.H.; Sone, C.; Park, Y.; Seonga, T.Y. Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process. Appl. Phys. Lett. 2006, 88, 103505–103507. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, B.; Dai, T.; Wei, W.; Kang, X.-N.; Zhang, G.-Y.; Trieu, S.; Wang, F. Optimization of Top Polymer Gratings to Improve GaN LEDs Light Transmission. Chin. Opt. Lett. 2008, 6, 788–790. [Google Scholar]
- Jin, X.; Trieu, S.; Wang, F.; Zhang, B.; Dai, T.; Kang, X.N.; Zhang, G.Y. Design Simulation of Top ITO Gratings to Improve Light Transmission for Gallium Nitride LEDs. In Proceedings of the 2009 Sixth International Conference on Information Technology: New Generations (ITNG2009), Las Vegas, NV, USA, 27–29 April 2009. [Google Scholar]
- Halpin, G.; Jin, X.; Fu, X.X.; Kang, X.N.; Zhang, G.Y. Study of Top ITO Nano-gratings on GaN LEDs. In Proceedings of the 13th IEEE International Conference on Nanotechnology, Beijing, China, 5–8 August 2013. [Google Scholar]
- Huang, H.W.; Huange, J.K.; Lin, C.H.; Lee, K.Y.; Hsu, H.W.; Yu, C.C.; Kuo, H.C. Efficiency Improvement of GaN-Based LEDs with a SiO2 Nanorod Array and a Patterned Sapphire Substrate. IEEE Electron Device Lett. 2010, 31, 582–584. [Google Scholar] [CrossRef]
- Jin, X.; Chavoor, G.; Liu, G. Patterned sapphire substrate and SiO2 array in GaN LED. In Proceedings of the SPIE Photonic West 2018, San Francisco, CA, USA, 31 January 2018. [Google Scholar]
Material | Sample Thickness (μm) | Refractive Index |
---|---|---|
ITO | 0.23 | 2.1 |
p-GaN | 0.2 | 2.5 |
InGaN/GaN MQWs | 0.1 | 2.6 |
n-GaN | 2 | 2.5 |
GaN | 3 | 2.5 |
Sapphire | 80 | 1.78 |
Ag | Reflection: 90% |
ITO Thickness | Output Intensity (a.u.) | % Improvement over CLED |
---|---|---|
46nm | 1.1500 | 0.000 |
78nm | 1.2606 | 9.617 |
260nm | 0.9946 | −13.513 |
Monitor | Intensity (a.u.) reference 1 | Intensity (a.u.) reference 2 | Intensity (a.u.) for ITO 46 nm maximum value | Intensity (a.u.) for ITO 46 nm grating period 500 nm |
---|---|---|---|---|
Left | 0.017 | 0.0605 | 0.533 | 0.16 |
Right | 0.124 | 0.244 | 0.488 | 0.3 |
Bottom | 0.3897 | 0.5726 | 1.322 | 0.20 |
Top | 1.149 | 1.15 | 3.5778 | 3.54 |
Total | 1.680 | 2.027 | ------ | 4.20 |
Material | Thickness (μm) | Refractive Index |
---|---|---|
p-GaN | 0.12 | 2.55 |
P-AlGaN | 0.05 | 2.5 |
InGaN/GaN | 0.115 | 2.6 |
n-GaN | 2 | 2.55 |
GaN | 3 | 2.55 |
Sapphire | 80 | 1.77 |
Structure | Average Power (a.u.) | Percent Improvement (%) | |
---|---|---|---|
a | Conventional (CLED) | 32.239 | --- |
b | CLED Ag-middle | 23.078 | −28.416 |
c | CLED Ag-bottom | 32.227 | −0.037218 |
d | NR (only) | 41.934 | 30.072 |
e | PSS (only) | 37.159 | 15.261 |
f | PSS & NR | 40.769 | 26.459 |
g | PSS Ag-middle | 35.461 | 9.9941 |
h | NR Ag-middle | 73.191 | 127.03 |
i | PSS Ag-bottom | 41.358 | 28.29 |
j | NR Ag-bottom | 69.759 | 116.38 |
k | PSS NR Ag-middle | 42.221 | 30.963 |
l | PSS NR Ag-bottom | 38.011 | 17.904 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Trieu, S.; Chavoor, G.J.; Halpin, G.M. Enhancing GaN LED Efficiency through Nano-Gratings and Standing Wave Analysis. Nanomaterials 2018, 8, 1045. https://doi.org/10.3390/nano8121045
Jin X, Trieu S, Chavoor GJ, Halpin GM. Enhancing GaN LED Efficiency through Nano-Gratings and Standing Wave Analysis. Nanomaterials. 2018; 8(12):1045. https://doi.org/10.3390/nano8121045
Chicago/Turabian StyleJin, Xiaomin, Simeon Trieu, Gregory James Chavoor, and Gabriel Michael Halpin. 2018. "Enhancing GaN LED Efficiency through Nano-Gratings and Standing Wave Analysis" Nanomaterials 8, no. 12: 1045. https://doi.org/10.3390/nano8121045
APA StyleJin, X., Trieu, S., Chavoor, G. J., & Halpin, G. M. (2018). Enhancing GaN LED Efficiency through Nano-Gratings and Standing Wave Analysis. Nanomaterials, 8(12), 1045. https://doi.org/10.3390/nano8121045