Deposition of Magnetite Nanofilms by Pulsed Injection MOCVD in a Magnetic Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials, General Procedures, and Equipment
2.2. Synthesis of Fe(tmhd)3 Precursor
2.3. Pulsed Injection Metallorganic Chemical Vapour Deposition (PI MOCVD) Reactor
3. Results and Discussion
3.1. PI MOCVD of Fe3O4 Films
3.2. Structural Characterisation
3.2.1. X-ray Diffraction Studies of Fe3O4 Films on Al2O3(0001)
3.2.2. X-ray Diffraction Studies of Fe3O4 Films on MgO(001)
3.3. Surface Morphology
3.4. Raman Spectroscopy
3.5. Magnetic Properties
3.5.1. Fe3O4 Films on Al2O3 Substrates
3.5.2. Fe3O4 Films on MgO Substrates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Satpathy, S. Electron states, magnetism, and the Verwey transition in magnetite. Phys. Rev. B 1991, 44, 13319. [Google Scholar] [CrossRef]
- Degroot, R.A.; Buschow, K.H.J. Recent developments in half-metallic magnetism. J. Magn. Magn. Mater. 1986, 54–57, 1377–1380. [Google Scholar] [CrossRef]
- Penicaud, M.; Siberchicot, B.; Sommers, C.B.; Kubler, J. Calculated electronic band-structure and magnetic-moments of ferrites. J. Magn. Magn. Mater. 1992, 103, 212–220. [Google Scholar] [CrossRef]
- Dedkov, Y.S.; Rudiger, U.; Guntherodt, G. Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys. Rev. B 2002, 65. [Google Scholar] [CrossRef]
- Huang, D.J.; Chang, C.F.; Chen, J.; Tjeng, L.H.; Rata, A.D.; Wu, W.P.; Chung, S.C.; Lin, H.J.; Hibma, T.; Chen, C.T. Spin-resolved photoemission studies of epitaxial Fe3O4(1 0 0) thin films. J. Magn. Magn. Mater. 2002, 239, 261–265. [Google Scholar] [CrossRef]
- Vescovo, E.; Kim, H.J.; Ablett, J.M.; Chambers, S.A. Spin-polarized conduction in localized ferromagnetic materials: The case of Fe3O4 on MgO(100). J. Appl. Phys. 2005, 98. [Google Scholar] [CrossRef]
- Hu, G.; Suzuki, Y. Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys. Rev. Lett. 2002, 89, 276601. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.H.; Chopdekar, R.; Suzuki, Y. Observation of inverse magnetoresistance in epitaxial magnetite/manganite junctions. J. Appl. Phys. 2003, 93, 7516–7518. [Google Scholar] [CrossRef]
- Van Dijken, S.; Fain, X.; Watts, S.M.; Nakajima, K.; Coey, J.M.D. Magnetoresistance of Fe3O4/Au/Fe3O4 and Fe3O4/Au/Fe spin-valve structures. J. Magn. Magn. Mater. 2004, 280, 322–326. [Google Scholar] [CrossRef]
- Van Dijken, S.; Fain, X.; Watts, S.M.; Coey, J.M.D. Negative magnetoresistance in Fe3O4/Au/Fe spin valves. Phys. Rev. B 2004, 70, 052409. [Google Scholar] [CrossRef]
- Snoeck, E.; Ch, G.; Serra, R.; BenAssayag, G.; Moussy, J.B.; Bataille, A.M.; Pannetier, M.; Gautier-Soyer, M. Experimental evidence of the spin dependence of electron reflections in magnetic CoFe2O4/Au/Fe3O4 trilayers. Phys. Rev. B (Condens. Matter Mater. Phys.) 2006, 73, 104434. [Google Scholar] [CrossRef]
- Diep, H.T. Theoretical methods for understanding advanced magnetic materials: The case of frustrated thin films. J. Sci. Adv. Mater. Devices 2016, 1, 31–44. [Google Scholar] [CrossRef]
- Scheunert, G.; Heinonen, O.; Hardeman, R.; Lapicki, A.; Gubbins, M.; Bowman, R.M. A review of high magnetic moment thin films for microscale and nanotechnology applications. Appl. Phys. Rev. 2016, 3, 011301. [Google Scholar] [CrossRef] [Green Version]
- Tudu, B.; Tiwari, A. Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications. Vacuum 2017, 146, 329–341. [Google Scholar] [CrossRef]
- Kleint, C.A.; Semmelhack, H.C.; Lorenz, M.; Krause, M.K. Structural and magnetic properties of epitaxial magnetite thin films prepared by pulsed laser deposition. J. Magn. Magn. Mater. 1995, 140, 725. [Google Scholar] [CrossRef]
- Ishikawa, M.; Tanaka, H.; Kawai, T. Preparation of highly conductive Mn-doped Fe3O4 thin films with spin polarization at room temperature using a pulsed-laser deposition technique. Appl. Phys. Lett. 2005, 86, 222504. [Google Scholar] [CrossRef]
- Sena, S.P.; Lindley, R.A.; Blythe, H.J.; Sauer, C.; Al-Kafarji, M.; Gehring, G.A. Investigation of magnetite thin films produced by pulsed laser deposition. J. Magn. Magn. Mater. 1997, 176, 111–126. [Google Scholar] [CrossRef]
- Gong, G.Q.; Gupta, A.; Xiao, G.; Qian, W.; Dravid, V.P. Magnetoresistance and magnetic properties of epitaxial magnetite thin films. Phys. Rev. B 1997, 56, 5096. [Google Scholar] [CrossRef]
- Soeya, S.; Hayakawa, J.; Takahashi, H.; Ito, K.; Yamamoto, C.; Kida, A.; Asano, H.; Matsui, M. Development of half-metallic ultrathin Fe3O4 films for spin-transport devices. Appl. Phys. Lett. 2002, 80, 823–825. [Google Scholar] [CrossRef]
- Margulies, D.T.; Parker, F.T.; Spada, F.E.; Goldman, R.S.; Li, J.; Sinclair, R.; Berkowitz, A.E. Anomalous moment and anisotropy behavior in Fe3O4 films. Phys. Rev. B 1996, 53, 9175. [Google Scholar] [CrossRef]
- Reisinger, D.; Majewski, P.; Opel, M.; Alff, L.; Gross, R. Hall effect, magnetization, and conductivity of Fe3O4 epitaxial thin films. Appl. Phys. Lett. 2004, 85, 4980–4982. [Google Scholar] [CrossRef]
- Lai, C.H.; Huang, P.H.; Wang, Y.J.; Huang, R.T. Room-temperature growth of epitaxial Fe3O4 films by ion beam deposition. J. Appl. Phys. 2004, 95, 7222–7224. [Google Scholar] [CrossRef]
- Kennedy, R.J.; Stampe, P.A. films grown by laser ablation on Si(100) and GaAs(100) substrates with and without MgO buffer layers. J. Phys. D Appl. Phys. 1999, 32, 16. [Google Scholar] [CrossRef]
- Tiwari, S.; Prakash, R.; Choudhary, R.J.; Phase, D.M. Oriented growth of Fe3O4 thin film on crystalline and amorphous substrates by pulsed laser deposition. J. Phys. D Appl. Phys. 2007, 40, 4943–4947. [Google Scholar] [CrossRef]
- Jain, S.; Adeyeye, A.O.; Dai, D.Y. Magnetic properties of half-metallic Fe3O4 films. J. Appl. Phys. 2004, 95, 7237–7239. [Google Scholar] [CrossRef]
- Parames, M.L.; Mariano, J.; Viskadourakis, Z.; Popovici, N.; Rogalski, M.S.; Giapintzakis, J.; Conde, O. PLD of Fe3O4 thin films: Influence of background gas on surface morphology and magnetic properties. Appl. Surf. Sci. 2006, 252, 4610–4614. [Google Scholar] [CrossRef]
- Watts, S.M.; Nakajima, K.; Dijken, S.V.; Coey, J.M.D. Transport Characteristics of Magnetite Thin Films Grown Onto GaAs Substrates; AIP Publishing: Melville, NY, USA, 2004; pp. 7465–7467. [Google Scholar]
- Watts, S.M.; Boothman, C.; van Dijken, S.; Coey, J.M.D. Magnetite Schottky barriers on GaAs substrates. Appl. Phys. Lett. 2005, 86, 3. [Google Scholar] [CrossRef]
- Lu, Y.X.; Claydon, J.S.; Ahmad, E.; Xu, Y.B.; Ali, M.; Hickey, B.J.; Thompson, S.M.; Matthew, J.A.D.; Wilson, K. Hybrid Fe3O4/GaAs(100) structure for spintronics. J. Appl. Phys. 2005, 97. [Google Scholar] [CrossRef]
- Margulies, D.T.; Parker, F.T.; Rudee, M.L.; Spada, F.E.; Chapman, J.N.; Aitchison, P.R.; Berkowitz, A.E. Origin of the Anomalous Magnetic Behavior in Single Crystal Fe3O4 Films. Phys. Rev. Lett. 1997, 79, 5162. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, X.; Shvets, I.V. Enhancement of the magnetization saturation in magnetite (100) epitaxial films by thermo-chemical treatment. J. Appl. Phys. 2004, 95, 7357–7359. [Google Scholar] [CrossRef]
- Hibma, T.; Voogt, F.C.; Niesen, L.; van der Heijden, P.A.A.; de Jonge, W.J.M.; Donkers, J.; van der Zaag, P.J. Anti-phase domains and magnetism in epitaxial magnetite layers. J. Appl. Phys. 1999, 85, 5291–5293. [Google Scholar] [CrossRef] [Green Version]
- Bobo, J.F.; Basso, D.; Snoeck, E.; Gatel, C.; Hrabovsky, D.; Gauffier, J.L.; Ressier, L.; Mamy, R.; Visnovsky, S.; Hamrle, J.; et al. Magnetic behavior and role of the antiphase boundaries in Fe3O4 epitaxial films sputtered on MgO (001). Eur. Phys. J. B 2001, 24, 43–49. [Google Scholar] [CrossRef]
- Kasama, T.; Dunin-Borkowski, R.E.; Eerenstein, W. Off-axis electron holography observation of magnetic microstructure in a magnetite (001) thin film containing antiphase domains. Phys. Rev. B 2006, 73. [Google Scholar] [CrossRef]
- Hong, J.P.; Lee, S.B.; Jung, Y.W.; Lee, J.H.; Yoon, K.S.; Kim, K.W.; Kim, C.O.; Lee, C.H. Room temperature formation of half-metallic Fe3O4 thin films for the application of spintronic devices. Appl. Phys. Lett. 2003, 83, 1590. [Google Scholar]
- Tang, X.-L.; Zhang, H.-W.; Su, H.; Zhong, Z.-Y.; Jing, Y.-L. The impact on the magnetic field growth of half-metallic Fe3O4 thin films. J. Solid State Chem. 2006, 179, 1618–1622. [Google Scholar] [CrossRef]
- Zukova, A.; Teiserskis, A.; Gun’ko, Y.K.; Sanchez, A.M.; van Dijken, S. Anomalous magnetic field effects during pulsed injection metal-organic chemical vapor deposition of magnetite films. Appl. Phys. Lett. 2010, 96. [Google Scholar] [CrossRef]
- Gondoni, P.; Ghidelli, M.; Di Fonzo, F.; Russo, V.; Bruno, R.; Marti-Rujas, J.; Bottani, C.E.; Bassi, A.L.; Casari, C.S. Highly Performing Al:ZnO Thin Films Grown by Pulsed Laser Deposition at Room Temperature. Nanosci. Nanotechnol. Lett. 2013, 5, 484–486. [Google Scholar] [CrossRef]
- Bricchi, B.R.; Ghidelli, M.; Mascaretti, L.; Zapelli, A.; Russo, V.; Casari, C.S.; Terraneo, G.; Alessandri, I.; Ducati, C.; Li Bassi, A. Integration of plasmonic Au nanoparticles in TiO2 hierarchical structures in a single-step pulsed laser co-deposition. Mater. Des. 2018, 156, 311–319. [Google Scholar] [CrossRef]
- Ma, Y.; Watanabe, K.; Awaji, S.; Motokawa, A.M. Jc enhancement of YBa2Cu3O7 films on polycrystalline silver substrates by metalorganic chemical vapor deposition in high magnetic fields. Appl. Phys. Lett. 2000, 77, 3633. [Google Scholar] [CrossRef]
- Cheng, J.; Sterbinsky, G.E.; Wessels, B.W. Magnetic and magneto-optical properties of heteroepitaxial magnetite thin films. J. Cryst. Growth 2008, 310, 3730. [Google Scholar] [CrossRef]
- Shebanova, O.; Lazor, A.P. Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum. J. Solid State Chem. 2003, 174, 424–430. [Google Scholar] [CrossRef]
- Gupta, R.; Sood, A.K.; Metcalf, P.; Honig, A.J.M. Raman study of stoichiometric and Zn-doped Fe3O4. Phys. Rev. B 2002, 65, 104430. [Google Scholar] [CrossRef]
- Gasparov, L.V.; Tanner, D.B.; Romero, D.B.; Berger, H.; Margaritondo, G.; Forro, A.L. Infrared and Raman studies of the Verwey transition in magnetite. Phys. Rev. B 2000, 62, 7939. [Google Scholar] [CrossRef]
- Dunnwald, J.; Otto, A. An investigation of phase transitions in rust layers using Raman spectroscopy. Corros. Sci. 1989, 29, 1167. [Google Scholar] [CrossRef]
- Hart, T.R.; Adams, S.B.; Tempkin, H. Tempkin 3rd International Conference on Light Scattering in Solids, Paris; Porto, S., Ed.; Flammarion: Paris, France, 1976; p. 254. [Google Scholar]
- Massey, M.J.; Baier, U.; Merlin, R.; Weber, W.H. Effects of pressure and isotopic substitution on the Raman spectrum of α-Fe2O3: Identification of two-magnon scattering. Phys. Rev. B Condens. Matter 1990, 41, 7822. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.H.; Duffy, T.S. Raman spectroscopy of Fe2O3 to 62 GPa. Am. Mineral. 2002, 87, 318. [Google Scholar] [CrossRef]
- Hellwege, K.H.; Bonnenberg, D. Magnetic and Other Properties of Oxides and Related Compounds; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
Deposition temperature | 450–600 °C | |
Evaporation temperature | 140 °C | |
Carrier gas flow | 80 mL/min | |
Carrier gas | Ar, Ar+10% H2 | |
Reactor pressure | 5 mbar | |
Metalorganic precursors | Fe(tmhd)3 | |
Solvent | 1,2-dimethoxyethane | |
Fe concentration in solution | 0.015 mol/L | |
Impulse frequency | 2 Hz | |
Microdose mass | 3 mg | |
Substrates | MgO(100), Al2O3(0001) | |
Deposition Temperature (°C) | Thickness (nm) | |
Al2O3(0001) | MgO(001) | |
Films grown in Ar atmosphere | ||
450 | 44 | 73 |
450, 1 T | 38 | 67.5 |
500 | ~100 | 140 |
500, cool down in 1 T | ~100 | 137 |
500, 1 T | ~100 | 144 |
550 | 46 | 45 |
550, cool down in 1 T | 50 | 39 |
550, 1 T | 45 | 31.5 |
600 | 40 | 25 |
600, 1 T | 24.5 | 21 |
Films grown in Ar+10%H2 atmosphere | ||
500 | 30.5 | 55 |
500, 1 T | 28 | 52 |
550 | 92 | 134 |
550, 1 T | 89 | 129 |
Al2O3 | Magnetic Parameters | ||||
---|---|---|---|---|---|
Specific (mass) Magnetisation, (Am2/kg) | Saturation Magnetisation, MS (103 A/m) at 1 T Field | Remanence, MR (Am2/kg) | Coersive Field, HC, (10−4 T) | Magnetic Moment per f.u. (μB/f.u.) | |
Grown in Ar only atmosphere | |||||
450 | 44 | 227 | 20 | 206 | 1.82 |
450, 1 T | 57 | 296 | 29 | 240 | 2.37 |
550 | 65 | 337 | 34 | 360 | 2.70 |
550, cool. 1 T | 76 | 393 | 45 | 502 | 3.15 |
550, 1 T | 100 | 518 | 62 | 640 | 4.15 |
600 | 72 | 372 | 40 | 500 | 2.94 |
600, 1 T | 130 | 666 | 81 | 705 | 5.34 |
Grown in Ar+H2 atmosphere | |||||
500 | 152 | 781 | 95 | 520 | 6.26 |
500, 1 T | 160 | 841 | 99 | 640 | 6.74 |
550 | 35 | 182 | 21 | 480 | 1.45 |
550, 1 T | 37 | 189 | 19 | 540 | 1.51 |
MgO | Magnetic Parameters | ||||
---|---|---|---|---|---|
Specific (mass) Magnetisation, (Am2/kg) | Saturation Magnetisation, MS (103 A/m) at 1 T Field | Remanence, MR (Am2/kg) | Coersive Field, HC (10−4 T) | Magnetic Moment per f.u. (μB/f.u.) | |
Grown in Ar only atmosphere | |||||
450 | 16 | 82 | 6.8 | 100 | 0.66 |
450, 1 T | 21 | 107 | 9.3 | 100 | 0.86 |
500 | 32 | 166 | 19.6, (4.8⊥) | 83, (185⊥) | 1.33 |
500, cool. 1 T | 31 | 159 | 18.1, (5.2⊥) | 145, (220⊥) | 1.27 |
500, 1 T | 35 | 181 | 22.2, (6.3⊥) | 120, (210⊥) | 1.45 |
550 | 37 | 191 | 5, (6.8⊥) | 47, (130⊥) | 1.53 |
550, cool. 1 T | 45 | 233 | 10 | 90 | 1.87 |
550, 1 T | 83 | 430 | 31, (24⊥) | 118, (185⊥) | 3.45 |
600 | 57 | 296 | 6.1, (11.3⊥) | 52, (153⊥) | 2.37 |
600, 1 T | 89 | 457 | 13.6, (9.1⊥) | 35, (60⊥) | 3.66 |
Grown in Ar+H2 atmosphere | |||||
500 | 114 | 592 | 61 | 126 | 4.74 |
500, 1 T | 122 | 630 | 70 | 90 | 5.05 |
550 | 12 | 63 | 3.5 | 89 | 0.51 |
550, 1 T | 18 | 71 | 4.1 | 68 | 0.73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zukova, A.; Teiserskis, A.; Rohava, Y.; Baranov, A.V.; Van Dijken, S.; Gun’ko, Y.K. Deposition of Magnetite Nanofilms by Pulsed Injection MOCVD in a Magnetic Field. Nanomaterials 2018, 8, 1064. https://doi.org/10.3390/nano8121064
Zukova A, Teiserskis A, Rohava Y, Baranov AV, Van Dijken S, Gun’ko YK. Deposition of Magnetite Nanofilms by Pulsed Injection MOCVD in a Magnetic Field. Nanomaterials. 2018; 8(12):1064. https://doi.org/10.3390/nano8121064
Chicago/Turabian StyleZukova, Anna, Arunas Teiserskis, Yuliya Rohava, Alexander V. Baranov, Sebastiaan Van Dijken, and Yurii K. Gun’ko. 2018. "Deposition of Magnetite Nanofilms by Pulsed Injection MOCVD in a Magnetic Field" Nanomaterials 8, no. 12: 1064. https://doi.org/10.3390/nano8121064
APA StyleZukova, A., Teiserskis, A., Rohava, Y., Baranov, A. V., Van Dijken, S., & Gun’ko, Y. K. (2018). Deposition of Magnetite Nanofilms by Pulsed Injection MOCVD in a Magnetic Field. Nanomaterials, 8(12), 1064. https://doi.org/10.3390/nano8121064