Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method
Abstract
:1. Introduction
2. Growth Process
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Ganapathi, K.; Salahuddin, S. How Good Can Monolayer MoS2 Transistors Be? Nano Lett. 2011, 11, 3768–3773. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Kaneta, C.; Katayama-Yoshida, H.; Morita, A. Lattice dynamics of black phosphorus. Solid State Commun. 1983, 44, 517–519. [Google Scholar] [CrossRef]
- Kaneta, C.; Katayamayoshida, H.; Morita, A. Lattice Dynamics of Black Phosphorus. I. Valence Force Field Model. J. Phys. Soc. Jpn. 2007, 55, 1213–1223. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Kong, X.; Hu, Z.X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed]
- Buscema, M.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; Van Der Zant, H.S.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352. [Google Scholar] [CrossRef] [PubMed]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 83, 109–162. [Google Scholar] [CrossRef]
- Van der Vlies, A.J.; Kishan, G.; Niemantsverdriet, J.W.; Prins, R.; Weber, T. Basic Reaction Steps in the Sulfidation of Crystalline Tungsten Oxides. J. Phys. Chem. B 2002, 106, 3449–3457. [Google Scholar] [CrossRef]
- Liu, Y.; Nan, H.; Wu, X.; Pan, W.; Wang, W.n.; Bai, J.; Zhao, W.; Sun, L.; Wang, X.; Ni, Z. Layer-by-Layer Thinning of MoS2 by Plasma. ACS Nano 2013, 7, 4202–4209. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; He, K.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, S.; Chervy, T.; Shalabney, A.; Azzini, S.; Orgiu, E.; Hutchison, J.A.; Genet, C.; Samorì, P.; Ebbesen, T.W. Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Lett. 2016, 16, 4368–4374. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.; Eda, G. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, C.; Chernikov, A.; Hill, H.M.; Rigosi, A.F.; Heinz, T.F. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS2 after Ultrafast Excitation. Nano Lett. 2017, 17, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, I.; Gomez, M.; Coley, W.C.; Le, D.; Echeverria, E.M.; Stecklein, G.; Kandyba, V.; Balijepalli, S.K.; Klee, V.; Nguyen, A.E.; et al. Band structure characterization of WS2 grown by chemical vapor deposition. Appl. Phys. Lett. 2016, 108, 252103. [Google Scholar] [CrossRef]
- Firmiano, E.G.; Cordeiro, M.A.; Rabelo, A.C.; Dalmaschio, C.J.; Pinheiro, A.N.; Pereira, E.C.; Leite, E.R. Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 2012, 48, 7687–7689. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kumar, S.B.; Ouyang, Y.; Guo, J. Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors. IEEE Trans. Electron Devices 2011, 58, 3042–3047. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Z.; Zhang, W.; Li, Y. Two dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737. [Google Scholar] [CrossRef]
- Guo, X.; Tong, X.; Wang, Y.; Chen, C.; Jina, G.; Guo, X. High photoelectrocatalytic performance of a MoS2–SiC hybrid structure for hydrogen evolution reaction. J. Mater. Chem. A 2013, 1, 4657–4661. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H.; Wu, Y.; Jiao, L. Controlled Synthesis of Highly Crystalline MoS2 Flakes by Chemical Vapor Deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307. [Google Scholar] [CrossRef] [PubMed]
- Endler, I.; Leonhardt, A.; König, U.; Van den Berg, H.; Pitschke, W.; Sottke, V. Chemical vapour deposition of MoS2 coatings using the precursors MoCl5 and H2S. Surf. Coat. Technol. 1999, 120–121, 482–488. [Google Scholar] [CrossRef]
- Liu, K.K.; Lee, Y.H.; Lina, Y.C.; Huanga, J.K.; Zhangb, X.-Q.; Linb, T.-W.; Li, L.J. Chemical Vapor Deposited MoS2 Thin Layers and Their Applications. ECS Trans. 2013, 50, 61–63. [Google Scholar] [CrossRef]
- Lee, Y.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C.; Huang, J.; Chang, M.; Chang, C.; et al. Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Lett. 2013, 13, 1852–1857. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, W.; Huang, J.; Liu, K.; Lee, Y.; Liang, C.; Chud, C.; Li, L. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637–6641. [Google Scholar] [CrossRef] [PubMed]
- Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T. Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2, Monolayer from Chemical Vapor Deposition. Adv. Opt. Mater. 2014, 2, 131–136. [Google Scholar] [CrossRef]
- Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct Chemical Vapor Deposition Growth of WS2 Atomic Layers on Hexagonal Boron Nitride. ACS Nano 2014, 8, 8273–8277. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wang, W.H.; Yang, L.; Huang, J.; Zhang, J.Y.; Xiang, B. Controllable Synthesis of High Quality Monolayer WS2 on a SiO2/Si Substrate by Chemical Vapor Deposition. RSC Adv. 2015, 5, 15795–15799. [Google Scholar] [CrossRef]
- Gutierrez, H.R.; Perea-Lopez, N.; Elias, A.L.; Berkdemir, A.; Wang, B.; Lv, R.; Lopez-Urias, F.; Crespi, V.H.; Terrones, H.; Terrones, M. Extraordinary Room Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 2013, 13, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazic, P.; Gibertini, M.; Marzari, N.; Sanchez, O.L.; Kung, Y.C.; Krasnozhon, D.; Chen, M.W.; et al. Large-Area Epitaxial Monolayer MoS2. ACS Nano 2015, 9, 4611–4620. [Google Scholar] [CrossRef] [PubMed]
- Bagnall, A.G.; Liang, W.Y.; Marseglia, E.A.; Welber, B. Raman studies of MoS2 at high pressure. Physica B+C 1980, 99, 343–346. [Google Scholar] [CrossRef]
λExc | Phonon Modes | 1 Layer | 2 Layer | 3 Layer | Multilayer |
---|---|---|---|---|---|
514 nm | (cm−1) | 356.17 | 354.23 | 352.67 | 352.75 |
A1g (cm−1) | 419.64 | 421.03 | 421.25 | 422.12 | |
4.5 | 1.6 | 1.04 | 0.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, F.; Yang, R.; Xu, Y.; Qian, S.; Zhang, S.; Cheng, H.; Zhang, Y. Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method. Nanomaterials 2018, 8, 100. https://doi.org/10.3390/nano8020100
Lan F, Yang R, Xu Y, Qian S, Zhang S, Cheng H, Zhang Y. Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method. Nanomaterials. 2018; 8(2):100. https://doi.org/10.3390/nano8020100
Chicago/Turabian StyleLan, Feifei, Ruixia Yang, Yongkuan Xu, Shengya Qian, Song Zhang, Hongjuan Cheng, and Ying Zhang. 2018. "Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method" Nanomaterials 8, no. 2: 100. https://doi.org/10.3390/nano8020100
APA StyleLan, F., Yang, R., Xu, Y., Qian, S., Zhang, S., Cheng, H., & Zhang, Y. (2018). Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method. Nanomaterials, 8(2), 100. https://doi.org/10.3390/nano8020100