Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Field Emission Scanning Electron Microscopy
2.3. Measurements and Data Analysis of in-situ Isothermal Synchrotron Radiation Diffraction (SRD)
2.4. Quantitative Analysis
2.5. Crystallization Activation Energies
3. Results and Discussion
3.1. Microstructural Imaging
3.2. Crystallization Kinetics
3.3. Activation Energies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gilja, V.; Novaković, K.; Travas-Sejdic, J.; Hrnjak-Murgić, Z.; Roković, M.K.; Zic, M. Stability and synergistic effect of polyaniline/TiO2 photocatalysts in degradation of azo dye in wastewater. Nanomaterials 2017, 7, 412. [Google Scholar] [CrossRef] [PubMed]
- Macak, J.M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr. Opin. Solid. State. Mater. Sci. 2007, 11, 3–18. [Google Scholar] [CrossRef]
- Xiong, H.; Slater, M.D.; Balasubramanian, M.; Johnson, C.S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565. [Google Scholar] [CrossRef]
- Yanga, D.; Parka, H.; Choa, S.; Kima, H.; Choi, W. TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area. J. Phys. Chem. Solids 2008, 69, 1272–1275. [Google Scholar] [CrossRef]
- Albetran, H.; O'Connor, B.; Low, I. Effect of calcination on band gaps for electrospun titania nanofibers heated in air–argon mixtures. Mater. Des. 2016, 92, 480–485. [Google Scholar] [CrossRef]
- Hanaor, D.A.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Chuangchote, S.; Jitputti, J.; Sagawa, T.; Yoshikawa, S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 2009, 1, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Enomoto, N.; Nakagawa, Z.; Kawamura, K. Molecular dynamic simulation in titanium dioxide polymorphs: Rutile, brookite, and anatase. J. Am. Ceram. Soc. 1996, 79, 1095–1099. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Yang, H.G.; Cheng, H.M.; Lu, G.Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831–843. [Google Scholar] [CrossRef]
- Beltran, A.; Gracia, L.; Andres, J. Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. J. Phys. Chem. B 2006, 110, 23417–23423. [Google Scholar] [CrossRef] [PubMed]
- Ghicov, A.; Tsuchiya, H.; Macak, J.M.; Schmuki, P. Annealing effects on the photoresponse of TiO2 nanotubes. Phy. Status. Solidi. A 2006, 203, 28–30. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, X.; Chu, W.; Li, D. Effects of impurities containing phosphorus on the surface properties and catalytic activity of TiO2 nanotube arrays. Appl. Surf. Sci. 2006, 257, 1295–1299. [Google Scholar] [CrossRef]
- Kwoka, M.; Galstyan, V.; Comini, E.; Szuber, J. Pure and highly Nb-doped titanium dioxide nanotubular arrays: characterization of local surface properties. Nanomaterials 2017, 7, 456. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Ozaki, S. Grain growth and phase transformation of titanium oxide during calcination. J. Am. Ceram. Soc. 1961, 44, 120–127. [Google Scholar] [CrossRef]
- Shannon, R.D.; Pask, J.A. Kinetics of the Anatase-Rutile Transformation. J. Am. Ceram. Soc. 1965, 48, 391–398. [Google Scholar] [CrossRef]
- Low, I.M.; Albetran, H.; Prida, V.M.; Vega, V.; Manurung, P.; Ionescu, M. A comparative study on crystallization behavior, phase stability, and binding energy in pure and Cr-doped TiO2 nanotubes. J. Mater. Res. 2013, 28, 304–312. [Google Scholar] [CrossRef]
- Albetran, H.; O'Connor, B.; Low, I. Effect of pressure on TiO2 crystallization kinetics using in-situ high-temperature synchrotron radiation diffraction. J. Am. Ceram. Soc. 2017, 100, 3199–3207. [Google Scholar] [CrossRef]
- Liu, R.; Qiang, L.S.; Yang, W.D.; Liu, H.Y. The effect of calcination conditions on the morphology, the architecture and the photo-electrical properties of TiO2 nanotube arrays. Mater. Res. Bul. 2013, 48, 1458–1467. [Google Scholar] [CrossRef]
- Gamboa, J.A.; Pasquevich, D.M. Effect of chlorine atmosphere on the anatase-rutile transformation. J. Am. Ceram. Soc. 1992, 75, 2934–2938. [Google Scholar] [CrossRef]
- Li, H.; Cao, L.; Liu, W.; Su, G.; Dong, B. Synthesis and investigation of TiO2 nanotube arrays prepared by anodization and their photocatalytic activity. Ceram. Int. 2012, 38, 5791–5797. [Google Scholar] [CrossRef]
- Gong, D.; Grimes, C.A.; Varghese, O.K.; Hu, W.; Singh, R.S.; Chen, Z.; Dichey, E.C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331–3334. [Google Scholar] [CrossRef]
- Prida, V.M.; Hernández-Vélez, M.; Pirota, K.R.; Menéndez, A.; Vázquez, M. Synthesis and magnetic properties of Ni nanocylinders in self-aligned and randomly disordered grown titania nanotubes. Nanotechnology 2696, 16, 2696–2702. [Google Scholar] [CrossRef]
- Tan, A.W.; Pingguan-Murphy, B.; Ahmad, R.; Akbar, S.A. Review of titania nanotubes: Fabrication and cellular response. Ceram. Int. 2012, 38, 4421–4435. [Google Scholar] [CrossRef]
- Arunchandran, C.; Ramya, S.; George, R.P.; Mudali, U.K. Corrosion inhibitor storage and release property of TiO2 nanotube powder synthesized by rapid breakdown anodization method. Mater. Res. Bull. 2013, 48, 635–639. [Google Scholar] [CrossRef]
- Liao, J.; Lin, S.; Pan, N.; Li, D.; Li, S.; Li, J. Free-standing open-ended TiO2 nanotube membranes and their promising through-hole applications. Chem. Eng. J. 2012, 211, 343–352. [Google Scholar] [CrossRef]
- Kim, C.W.; Suh, S.P.; Choi, M.J.; Kang, Y.S.; Kang, Y.S. Fabrication of SrTiO3-TiO2 heterojunction photoanode with enlarged pore dimeter for dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 11820–11827. [Google Scholar] [CrossRef]
- Ding, J.; Huang, Z.; Zhu, J.; Kou, S.; Zhang, X.; Yang, H. Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets. Sci. Rep. 2015, 5, 17773. [Google Scholar] [CrossRef] [PubMed]
- Varghee, O.K.; Gong, D.W.; Paulose, M.; Grimes, C.A.; Dichey, E.C. Crystallization and high-temperature structural stability of titanium oxide nanotubes arrays. J. Mater. Res. 20031, 18, 156–165. [Google Scholar] [CrossRef]
- Yu, J.; Dai, G.; Cheng, B. Effect of Crystallization Methods on Morphology and Photocatalytic Activity of Anodized TiO2 Nanotube Array Films. J. Phys. Chem. C 2010, 114, 19378–19385. [Google Scholar] [CrossRef]
- Albetran, H.; Low, I.M. Effect of indium ion implantation on crystallization kinetics and phase transformation of anodized titania nanotubes using in-situ high-temperature radiation diffraction. J. Mater. Res. 2016, 31, 1588–1595. [Google Scholar] [CrossRef]
- Albetran, H.; Haroosh, H.; Dong, Y.; Prida, V.M.; O’Connor, B.H.; Low, I.M. Phase transformations and crystallization kinetics in electrospun TiO2 nanofibers in air and argon atmospheres. Appl. Phys. A 2014, 116, 161–169. [Google Scholar] [CrossRef]
- Albetran, H.; O'Connor, B.; Low, I. Activation energies for phase transformations in electrospun titania nanofibers: comparing the influence of argon and air atmospheres. Appl. Phys. A 2016, 122, 367. [Google Scholar] [CrossRef]
- Cahn, J.W. Transformation kinetics during continuous cooling. Acta. Metall. 1956, 4, 572–575. [Google Scholar] [CrossRef]
- Galwey, A.K.; Brown, M.E. Application of the Arrhenius equation to solid state kinetics: can this be justified? Thermochim. Acta 2002, 386, 91–98. [Google Scholar] [CrossRef]
- Low, I.M.; Yam, F.; Pang, W.K. In-situ diffraction studies on the crystallization and crystal growth in anodized TiO2 nanofibres. Mater. Lett. 2012, 87, 150–152. [Google Scholar] [CrossRef]
- Albetran, H.; O'Connor, B.H.; Prida, V.M.; Low, I.M. Effect of vanadium ion implantation on the crystallization kinetics and phase transformation of electrospun TiO2 nanofibers. Appl. Phys. A 2015, 120, 623–634. [Google Scholar] [CrossRef]
- Kumar, K.N.; Engell, J. Pore-structure stabilization by controlling particle coordination. J. Mater. Sci. Lett. 1995, 14, 1784–1788. [Google Scholar] [CrossRef]
- Kumar, K.N.P.; Keizer, K.; Burggraaf, A.J. Textural stability of titania–alumina composite membranes. J. Mater. Chem. 1993, 3, 917–922. [Google Scholar] [CrossRef]
Temperature (°C) | Residence time (min) |
---|---|
400 | 44 |
450 | 44 |
500 | 34 |
550 | 44 |
600 | 44 |
650 | 44 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albetran, H.; Vega, V.; Prida, V.M.; Low, I.-M. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes. Nanomaterials 2018, 8, 122. https://doi.org/10.3390/nano8020122
Albetran H, Vega V, Prida VM, Low I-M. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes. Nanomaterials. 2018; 8(2):122. https://doi.org/10.3390/nano8020122
Chicago/Turabian StyleAlbetran, Hani, Victor Vega, Victor M. Prida, and It-Meng Low. 2018. "Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes" Nanomaterials 8, no. 2: 122. https://doi.org/10.3390/nano8020122
APA StyleAlbetran, H., Vega, V., Prida, V. M., & Low, I. -M. (2018). Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes. Nanomaterials, 8(2), 122. https://doi.org/10.3390/nano8020122