A Systematic Study on the Structural and Optical Properties of Vertically Aligned Zinc Oxide Nanorods Grown by High Pressure Assisted Pulsed Laser Deposition Technique
Abstract
:1. Introduction
2. Results
2.1. Scanning Electron Microscope (SEM) Analysis
2.2. X-Ray Diffraction Analysis (XRD)
2.3. Raman Spectra Analysis
2.4. Photoluminescence (PL) Spectra Analysis
3. Discussion
4. Materials and Methods
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Klinghirn, C. ZnO: Material, physics and applications. J. Chem. Phys. Phys. Chem. 2007, 8, 782–803. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, A.; Haque, A.; Karnati, P.; Taufique, M.F.N.; Patel, R.; Ghosh, K. Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 2014, 572, 126–133. [Google Scholar] [CrossRef]
- Willander, M.; Nur, O.; Zhao, Q.X.; Yang, L.L.; Lorenz, M.; Cao, B.Q.; Zuinga Perez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; et al. Zinc oxide nanorod based photonic devices: Recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009, 20, 332001. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Sun, D.; Tian, C.; Tian, X.; Huang, Y. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study. Materials 2017, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Antonino, S.A.; Peter, B.; Bruno, S.; Jean, M.T.; Walter, V.S. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Lukas, S.M.; Judith, L.M.D. ZnO—Nanostructures, defects, and devices. Mater. Today 2007, 10, 40–48. [Google Scholar] [CrossRef]
- Morkoc, H.; Ozgur, M. General Properties of ZnO. In Zinc Oxide: Fundamentals, Materials and Device Technology; Wiley-VCH Verlag Gmbh and Co.KGaA: San Francisco, CA, USA, 2009; pp. 1–76. ISBN 9783527623945. [Google Scholar]
- Irene, G.V.; Monica, L.C. Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2009, 2, 19–34. [Google Scholar] [CrossRef]
- Jae, Y.P.; Sun, W.C.; Sang, S.K. Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays. Nanoscale Res. Lett. 2009, 5, 353. [Google Scholar] [CrossRef]
- Wu, J.J.; Liu, S.C. Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition. Adv. Mater. 2002, 14, 215–218. [Google Scholar] [CrossRef]
- Liu, Z.W.; Ong, C.K.; Yu, T.; Shen, Z.X. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room temperature photoluminescence properties. Appl. Phys. Lett. 2006, 88, 053110. [Google Scholar] [CrossRef]
- Liu, Z.W.; Ong, C.K. Synthesis and size control of ZnO nanorods by conventional pulsed-laser deposition without catalyst. Mater. Lett. 2007, 61, 3329–3333. [Google Scholar] [CrossRef]
- Hartanto, A.B.; Ning, X.; Nakata, Y.; Okada, T. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Appl. Phys. A Mater. Sci. Process. 2004, 78, 299–301. [Google Scholar] [CrossRef]
- Robert, E. Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2007; p. 75. ISBN 978-0-471-44709-2. [Google Scholar]
- Ye, Z.; Hongbo, J.; Rongming, W.; Chinping, C.; Xuhui, L.; Dapeng, Y. Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl. Phys. Lett. 2003, 83, 4631–4633. [Google Scholar] [CrossRef]
- Hong, J.F.; Peter, W.; Margit, Z. Semiconductor Nanowires: From Self-Organization to Patterned Growth. Small 2006, 2, 700–717. [Google Scholar] [CrossRef]
- Meyer, B.; Dominik, M. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 0399002. [Google Scholar] [CrossRef]
- Robert, R.R. Lattice parameters of ZnO from 4.2° to 296° K. J. Appl. Phys. 1970, 41, 5063–5066. [Google Scholar] [CrossRef]
- Arguello, C.A.; Rousseau, D.L.; Porto, S.P.S. First-Order Raman Effect in Wurtzite-Type Crystals. Phys. Rev. 1969, 181, 1351. [Google Scholar] [CrossRef]
- Khan, A.A.; Fonobeov, V.A.; Ballndin, A.A. Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl. Phys. Lett. 2005, 86, 053103. [Google Scholar] [CrossRef]
- Mitra, S.S.; Brafman, O.; Daniels, W.B.; Crawford, R.K. Pressure-Induced Phonon Frequency Shifts Measured by Raman Scattering. Phys. Rev. B 1969, 186, 942. [Google Scholar] [CrossRef]
- Cheng, A.J.; Tzeng, Y.; Xu, H.; Alur, S.; Wang, Y.; Park, M.; Wu, T.H.; Shannon, C.; Kim, D.-J.; Wang, D. Raman analysis of longitudinal optical phonon-plasmon coupled modes of aligned ZnO nanorods. J. Appl. Phys. 2009, 105, 073104. [Google Scholar] [CrossRef]
- Frederic, D.; Julio, P.P.; Macro, A.S.; Jean, C.C.; Alain, P. High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B 2002, 65, 092101. [Google Scholar] [CrossRef]
- Lin, B.; Fu, Z.; Jia, Y. Green luminescent center in undoped zinc oxide films deposited on silicon Substrates. Appl. Phys. Lett. 2001, 79, 943–945. [Google Scholar] [CrossRef]
- Yao, B.D.; Chan, Y.F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759. [Google Scholar] [CrossRef]
- Studeikin, S.A.; Gologeo, N.; Cocivera, M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 1998, 84, 2287–2294. [Google Scholar] [CrossRef]
- Wu, X.L.; Siu, G.G.; Fu, C.L.; Ong, H.C. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 2001, 78, 2285–2287. [Google Scholar] [CrossRef]
- Koida, T.; Chichibu, S.F.; Uedono, A.; Sota, T.; Tsukazki, A.; Kawasaki, M. Radiative and nonradiative excitonic transitions in nonpolar (112̄0) and polar (0001̄) and (0001) ZnO epilayers. Appl. Phys. Lett. 2004, 84, 1079–1081. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chen, H.-P.; Liao, H.-C.; Chen, S.-Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 2005, 86, 183103. [Google Scholar] [CrossRef]
- Vanheusden, K.; Seager, C.H.; Warren, W.L.; Tallant, D.R.; Vigot, J.A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 1996, 68, 403–405. [Google Scholar] [CrossRef]
- Zhao, Q.; Cai, T.; Wang, S.; Zhu, R.; Liao, Z.; Yu, D. Enhanced near-band-edge emission and field emission properties from plasma treated ZnO nanowires. Appl. Phys. A 2010, 100, 165–170. [Google Scholar] [CrossRef]
- Cai, J.W.; Xu, J.P.; Zhang, X.S.; Niu, X.P.; Xing, T.Y.; Ji, T.; Li, L. Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient. Optoelectron. Lett. 2012, 8, 4–8. [Google Scholar] [CrossRef]
Serial No. | Number of Shots | Temperature | Average Diameter of the Nanorods | Average Length of the Nanorods | Standard Deviation (Diameter of Nanorods) | Standard Deviation (Length of Nanorods) | Average Aspect Ratio |
---|---|---|---|---|---|---|---|
1 | 5000 | 500 °C | 79 nm | 286 nm | 2.5 nm | 2.35 nm | 3.43 |
2 | 5000 | 550 °C | 185 nm | 900 nm | 2.6 nm | 0.57 µm | 8.44 |
3 | 10,000 | 550 °C | 162 nm | 1 µm | 1.6 nm | 0.36 µm | 7.72 |
Serial No. | Number of Pulsed Laser Shots | Temperature (°C) | FWHM (Degree) (0002) | Interplanar Spacing (d) (Å) | c (Å) | a (Å) | |
---|---|---|---|---|---|---|---|
1 | 5000 | 500 | 0.268 | 2.583 | 5.166 | 3.31 | 1.56 |
2 | 5000 | 550 | 0.268 | 2.612 | 5.224 | 3.23 | 1.61 |
3 | 10,000 | 550 | 0.258 | 2.572 | 5.144 | 3.22 | 1.59 |
4 | 15,000 | 550 | 0.287 | 2.570 | 5.140 | 3.11 | 1.65 |
5 | 5000 | 600 | 0.242 | 2.577 | 5.154 | 3.22 | 1.60 |
Serial. No | Number of Shots | Temperature (°C) | E2 High (cm−1) (Peak Position) | E2 High (cm−1) (FWHM) |
---|---|---|---|---|
1 | 5000 | 500 | 436.1 | 16.5 |
2 | 5000 | 550 | 436.2 | 28.1 |
3 | 10,000 | 550 | 435.7 | 21.1 |
4 | 15,000 | 550 | 435.7 | 24.6 |
5 | 5000 | 600 | 431.94 | 18.8 |
6 | 5000 (annealed in O2) | 500 | 431.36 | 22.9 |
7 | 5000 (annealed in H2) | 500 | 431.05 | 24.6 |
Serial. No | Number of Shots | Temperature (°C) | Defect Peak Position (eV) |
---|---|---|---|
1 | 5000 | 500 | 2.08 |
2 | 5000 | 550 | 2.23 |
3 | 10,000 | 550 | 2.18 |
4 | 15,000 | 550 | 2.01 |
5 | 5000 | 600 | 2.08 |
6 | 5000 (annealed in O2) | 500 | 2.13 |
7 | 5000 (annealed in H2) | 500 | 2.14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karnati, P.; Haque, A.; Taufique, M.F.N.; Ghosh, K. A Systematic Study on the Structural and Optical Properties of Vertically Aligned Zinc Oxide Nanorods Grown by High Pressure Assisted Pulsed Laser Deposition Technique. Nanomaterials 2018, 8, 62. https://doi.org/10.3390/nano8020062
Karnati P, Haque A, Taufique MFN, Ghosh K. A Systematic Study on the Structural and Optical Properties of Vertically Aligned Zinc Oxide Nanorods Grown by High Pressure Assisted Pulsed Laser Deposition Technique. Nanomaterials. 2018; 8(2):62. https://doi.org/10.3390/nano8020062
Chicago/Turabian StyleKarnati, Priyanka, Ariful Haque, M. F. N. Taufique, and Kartik Ghosh. 2018. "A Systematic Study on the Structural and Optical Properties of Vertically Aligned Zinc Oxide Nanorods Grown by High Pressure Assisted Pulsed Laser Deposition Technique" Nanomaterials 8, no. 2: 62. https://doi.org/10.3390/nano8020062
APA StyleKarnati, P., Haque, A., Taufique, M. F. N., & Ghosh, K. (2018). A Systematic Study on the Structural and Optical Properties of Vertically Aligned Zinc Oxide Nanorods Grown by High Pressure Assisted Pulsed Laser Deposition Technique. Nanomaterials, 8(2), 62. https://doi.org/10.3390/nano8020062