Optimal Hydrogen Production Coupled with Pollutant Removal from Biodiesel Wastewater Using a Thermally Treated TiO2 Photocatalyst (P25): Influence of the Operating Conditions
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of the Photocatalyst and Characterization
2.2. Simultaneous H2 Production and Pollutant Removal
3. Results and Discussion
3.1. Properties of Photocatalyst
3.2. Properties of Fresh and Acid-Pretreated Biodiesel Wastewater
3.3. Simultaneous H2 Production and Pollutant Removal
3.3.1. Requirements for Both UV Irradiation and the Photocatalyst
3.3.2. Effect of the Photocatalyst Loading
3.3.3. Effect of the UV Light Intensity
3.3.4. Effect of the Initial Wastewater pH
3.3.5. Effect of the Operating Time and Reaction Rate
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McNeill, J.; Kakuda, Y.; Kamel, B. Improving the quality of used frying oils by treatment with activated carbon and silica. J. Am. Oil Chem. Soc. 1986, 63, 1564–1567. [Google Scholar] [CrossRef]
- Pölczmann, G.; Tóth, O.; Beck, Á.; Hancsók, J. Investigation of storage stability of diesel fuels containing biodiesel produced from waste cooking oil. J. Clean. Prod. 2016, 111, 85–92. [Google Scholar] [CrossRef]
- Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical aspects of biodiesel production by transesterification—A review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Saifuddin, N.; Samiuddin, A.; Kumaran, P. A Review on processing technology for biodiesel production. Trends Appl. Sci. Res. 2015, 10, 1–37. [Google Scholar] [CrossRef]
- Suehara, K.; Kawamoto, Y.; Fujii, E.; Kohda, J.; Nakano, Y.; Yano, Y. Biological treatment of wastewater discharged from biodiesel fuel production plant with al- kali-catalyzed transesterification. J. Biosci. Bioeng. 2005, 100, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Jaruwat, P.; Pitakpoolsil, W.; Hunsom, M. Treatment of biodiesel wastewater by indirect electrooxidation: Effect of additives and process kinetics. Korean J. Chem. Eng. 2016, 33, 2090–2096. [Google Scholar] [CrossRef]
- Preechajarn, S.; Prasertsri, P. Thailand Biofuels Annual 2016; USDA Foreign Agricultural Service: Washington, DC, USA, 2016. [Google Scholar]
- Pitakpoolsil, W.; Hunsom, M. Adsorption of pollutants from biodiesel wastewater using chitosan flakes. J. Taiwan Inst. Chem. Eng. 2013, 44, 963–971. [Google Scholar] [CrossRef]
- Pitakpoolsil, W.; Hunsom, M. Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes: Parameter optimization and process kinetics. J. Environ. Manag. 2014, 133, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Kumjadpai, S.; Ngamlerdpokin, K.; Chatanon, P.; Lertsathitphongs, P.; Hunsom, M. Management of fatty acid methyl ester (FAME) wastewater by a combined two stage chemical recovery and coagulation process. Can. J. Chem. Eng. 2011, 89, 369–376. [Google Scholar] [CrossRef]
- Ngamlerdpokin, K.; Kumjadpai, S.; Chatanon, P.; Tungmanee, U.; Chuenchuanchom, S.; Jaruwat, P.; Lertsathitphongs, P.; Hunsom, M. Remediation of biodiesel wastewater by chemical- and electro-coagulation: A comparative study. J. Environ. Manag. 2011, 92, 2454–2460. [Google Scholar] [CrossRef] [PubMed]
- Daud, Z.; Awang, H.; Latif, A.A.A.; Nasir, N.; Ridzuan, M.B.; Ahmad, Z. Suspended solid, color, COD and oil and grease removal from biodiesel wastewater by coagulation and flocculation processes. Procedia 2015, 195, 2407–2411. [Google Scholar] [CrossRef]
- Srirangsan, A.; Ongwandee, M.; Chavalparit, O. Treatment of biodiesel wastewater by electrocoagulation process. Environ. Asia 2009, 2, 15–19. [Google Scholar]
- Jaruwat, P.; Kongjao, S.; Hunsom, M. Management of biodiesel wastewater by the combined processes of chemical recovery and electrochemical treatment. Energy Convers. Manag. 2010, 51, 531–537. [Google Scholar] [CrossRef]
- Chavalparit, O.; Ongwandee, M. Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology. J. Environ. Sci. 2009, 21, 1491–1496. [Google Scholar] [CrossRef]
- Ahmadi, S.; Sardari, E.; Javadian, H.R.; Katal, R.; Sefti, M.V. Removal of oil from biodiesel wastewater by electrocoagulation method. Korean J. Chem. Eng. 2013, 30, 634–641. [Google Scholar] [CrossRef]
- Meneses, J.M.D.; Vasconcelos, R.F.; Fernandes, T.F.; Trindade de Araújo, G. Treatment of biodiesel wastewater by electrocoagulation/flotation process: investigation of operational parameters. Quím. Nova 2012, 35, 235–240. [Google Scholar] [CrossRef]
- Romero, J.A.P.; Junior, F.S.S.C.; Figueiredo, R.T.; Silva, D.P.; Cavalcanti, E.B. Treatment of biodiesel wastewater by combined electroflotation and electrooxidation processes. Sep. Sci. Technol. 2013, 48, 2073–2079. [Google Scholar] [CrossRef]
- Daskalaki, V.M.; Panagiotopoulou, P.; Kondarides, D.I. Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming. Chem. Eng. J. 2011, 170, 433–439. [Google Scholar] [CrossRef]
- Melo, M.O.; Silva, L.A. Photocatalytic production of hydrogen: An innovative use for biomass derivatives. J. Braz. Chem. Soc. 2011, 22, 1399–1406. [Google Scholar] [CrossRef]
- Tseng, D.H.; Juang, L.C.; Huang, H.H. Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in aqueous suspension. Int. J. Photoenergy 2012, 2012, 328526. [Google Scholar] [CrossRef]
- Özcan, L.; Yurdakal, S.; Augugliaro, V.; Loddo, V.; Palmas, S.; Palmisano, G.; Palmisano, L. Photoelectrocatalytic selective oxidation of 4-methoxybenzyl alcohol in water by TiO2 supported on titanium anodes. Appl. Catal. B 2013, 132–133, 535–542. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.; Li, S. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Appl. Catal. A 2001, 214, 179–185. [Google Scholar] [CrossRef]
- Pansa-Ngat, P.; Jedsukontorn, T.; Hunsom, M. Simultaneous H2 production and pollutant removal from biodiesel wastewater by photocatalytic oxidation with different crystal structure TiO2 photocatalysts. J. Taiwan. Inst. Chem. Eng. 2017, 78, 386–394. [Google Scholar] [CrossRef]
- Wang, S.G.; Sun, X.F.; Liu, X.W.; Gong, W.X.; Gao, B.Y.; Bao, N. Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanisms. Chem. Eng. J. 2008, 142, 239–247. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); World Economic Forum (WEF). Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA: Washington, DC, USA, 1998. [Google Scholar]
- Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G. Biodiesel Analytical Methods; Subcontractor Report; National Renewable Energy Lab.: Golden, CO, USA, 2004. [Google Scholar]
- ASTM International. ASTM D 664: Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titratio; ASTM International: West Conshohocken, PA, USA, 2011; Available online: http://www.astm.org/Standards/D664 (accessed on 18 April 2017).
- Rodríguez, M. Fenton and UV-Based Fenton and UV-vis-Based Advanced Oxidation Processes in Wastewater Treatment: Degradation, Mineralization and Biodegradability Enhancement. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, April 2003. [Google Scholar]
- Wang, X.; Shih, K.; Li, X.Y. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts. Water Sci. Technol. 2011, 61, 2303–2308. [Google Scholar] [CrossRef] [PubMed]
- Kisch, H.; Bahnemann, D. Best Practice in photocatalysis: Comparing rates or apparent quantum yields? J. Phys. Chem. Lett. 2015, 6, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, K.; Ramana, C.V.; Rao, P.R. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. Int. J. Hydrog. Energy 1991, 16, 597–601. [Google Scholar] [CrossRef]
- Uyar, B.; Eroglu, I.; Yücel, M.; Gündüz, U.; Türker, L. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int. J. Hydrog. Energy 2007, 32, 4670–4677. [Google Scholar] [CrossRef]
- Shimura, K.; Yoshida, H. Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci. 2011, 4, 2467–2481. [Google Scholar] [CrossRef]
- Lakshminarasimhan, N.; Kim, W.; Choi, W. Effect of the agglomerated state on the photocatalytic hydrogen production with in situ agglomeration of colloidal TiO2 nanoparticles. J. Phys. Chem. C 2008, 112, 20451–20457. [Google Scholar] [CrossRef]
Property | Thai Standard | Fresh Wastewater | Pretreated Wastewater a | Treated Wastewater b |
---|---|---|---|---|
pH | 5.5–9.0 | 4.07–4.12 | 1.12–2.22 | 8.75–8.78 |
Soap (wt %) | - | 50.68–51.75 | 31.05–33.33 | 0.09–1.07 |
FFA (wt %) | - | 1.09–1.23 | 7.63–7.82 | 0.02–0.04 |
Glycerol (wt %) | - | 0.85–0.86 | 0.98–1.11 | N/D |
COD (mg/L) | ≤400 | 118,220–146,878 | 60,815–96,600 | 24,738–24,911 |
BOD (mg/L) | ≤60 | 620–1193 | 210–460 | 9.0–13.6 |
Oil and grease (mg/L) | ≤15 | 660–1885 | 336–1338 | 205–243 |
TDS (mg/L) | ≤3000 | 7392–13,568 | 11,496–12,584 | 7710–9100 |
TSS | ≤150 | 528–628 | 128–312 | 140–190 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pansa-Ngat, P.; Jedsukontorn, T.; Hunsom, M. Optimal Hydrogen Production Coupled with Pollutant Removal from Biodiesel Wastewater Using a Thermally Treated TiO2 Photocatalyst (P25): Influence of the Operating Conditions. Nanomaterials 2018, 8, 96. https://doi.org/10.3390/nano8020096
Pansa-Ngat P, Jedsukontorn T, Hunsom M. Optimal Hydrogen Production Coupled with Pollutant Removal from Biodiesel Wastewater Using a Thermally Treated TiO2 Photocatalyst (P25): Influence of the Operating Conditions. Nanomaterials. 2018; 8(2):96. https://doi.org/10.3390/nano8020096
Chicago/Turabian StylePansa-Ngat, Pimsuda, Trin Jedsukontorn, and Mali Hunsom. 2018. "Optimal Hydrogen Production Coupled with Pollutant Removal from Biodiesel Wastewater Using a Thermally Treated TiO2 Photocatalyst (P25): Influence of the Operating Conditions" Nanomaterials 8, no. 2: 96. https://doi.org/10.3390/nano8020096
APA StylePansa-Ngat, P., Jedsukontorn, T., & Hunsom, M. (2018). Optimal Hydrogen Production Coupled with Pollutant Removal from Biodiesel Wastewater Using a Thermally Treated TiO2 Photocatalyst (P25): Influence of the Operating Conditions. Nanomaterials, 8(2), 96. https://doi.org/10.3390/nano8020096