Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Hydrogenolysis of Glycerol
3. Materials and Methods
3.1. Catalyst Preparation
- Prepare an aqueous solution of RuCl3 and PVP, using 2 g RuCl3·xH2O, 96 mL de-ionized water and 8.2 g PVP.
- Add 3.3 g formaldehyde and 0.59 g NaOH to the above solution to synthesize Ru-PVP colloids.
- Wash the Ru-PVP colloids with acetone three times and then dry the products obtained.
- Prepare and sonicate an aqueous solution containing Ru-PVP colloids, ethanol (213 mL), NH4OH (10.9 mL) and de-ionized water (34.4 mL).
- Add TEOS (amount depends on Ru/Si atomic ratio) and agitate the resulting solution at room temperature for 24 h.
- Collect the Ru@SiO2 nanoparticles by washing, centrifuging, and drying.
- Calcine the sample at 400 °C for 4 h.
- Incipient impregnation of 2 g Ru@SiO2 particles with an aqueous solution containing 0.2 g NH4ReO4.
- Calcine the Re-Ru@SiO2 sample at 400 °C for 4 h.
- Reduce the particles in a gas of 5% hydrogen in 95% argon at a heating rate of 1 °C/min to 200 °C, and maintain at 200 °C for 4 h.
3.2. Catalyst Characterization
3.3. Reaction Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fernado, S.; Adhikari, S.; Chandrapal, C.; Murali, N. Biorefineries: Current status, challenges, and future direction. Energy Fuels 2006, 20, 1727–1737. [Google Scholar] [CrossRef]
- Johnson, D.T.; Taconi, K.A. The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 2007, 26, 338–348. [Google Scholar] [CrossRef]
- Pagliiaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C.D. From glycerol to value-added products. Angew. Chem. Int. Ed. 2007, 46, 4434–4440. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.H.; Beltramini, J.N.; Fan, Y.X.; Lu, G.Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527–549. [Google Scholar] [CrossRef] [PubMed]
- Vasiliadou, E.S.; Heracleous, E.; Vasalos, I.A.; Lemonidou, A.A. Ru-based catalysts for glycerol hydrogenolysis—Effect of support and metal precursor. Appl. Catal. B Environ. 2009, 92, 90–99. [Google Scholar] [CrossRef]
- Schlaf, M. Selective deoxygenation of sugar polyols to α,ω-diols and other oxygen content reduced materials—A new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis. Dalton Trans. 2006, 39, 4645–4653. [Google Scholar] [CrossRef] [PubMed]
- Sulivan, C.J. Ullmanns Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Miyazawa, T.; Kusunoki, Y.; Kunimori, K.; Tomishige, K. Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion exchange resinand its reaction mechanism. J. Catal. 2006, 240, 213–221. [Google Scholar] [CrossRef]
- Miyazawa, T.; Koso, S.; Kunimori, K.; Tomishige, K. Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Appl. Catal. A Gen. 2007, 318, 244–251. [Google Scholar] [CrossRef]
- Jin, S.; Xiao, Z.; Li, C.; Williams, C.T.; Liang, C. Hydrogenolysis of glycerol over HY zeolite supported Ru catalysts. J. Energy Chem. 2014, 23, 185–192. [Google Scholar] [CrossRef]
- Vanama, P.K.; Kumar, A.; Ginjupalli, S.R.; Komandur, V.R.C. Vapor-phase hydrogenolysis of glycerol over nanostructured Ru/MCM-41 catalysts. Catal. Today 2015, 250, 226–238. [Google Scholar] [CrossRef]
- Gallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.; Arcoya, A. Comparative study of the hydrogenolysis of glycerol over Ru-based catalysts supported on activated carbon, graphite, carbon nanotubes and KL-zeolite. Chem. Eng. J. 2015, 262, 326–333. [Google Scholar] [CrossRef]
- Salazzr, J.B.; Falcone, D.D.; Pham, H.N.; Datye, A.K.; Passos, F.B.; Davis, R.J. Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetalic Ru-Cu nanoparticles supported on TiO2. Appl. Catal. A Gen. 2014, 482, 137–144. [Google Scholar] [CrossRef]
- Ma, L.; He, D.; Li, Z. Promoting effect of rhenium on catalytic performance of Ru catalysts in hydrogenolysis of glycerol to propanediol. Catal. Commun. 2008, 9, 2489–2495. [Google Scholar] [CrossRef]
- Ma, L.; He, D. Influence of catalyst pretreatment on catalytic properties and performances of Ru-Re/SiO2 in glycerl hydrogenolysis to propanediol. Catal. Today 2010, 149, 148–156. [Google Scholar] [CrossRef]
- Tamura, M.; Amada, Y.; Liu, S.; Yuan, Z.; Nakagawa, Y.; Tomishige, K. Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol. J. Mol. Catal. A Chem. 2014, 388–389, 177–187. [Google Scholar] [CrossRef]
- Li, K.T.; Hsu, M.H.; Wang, I. Palladium core-porous silica shell-nanoparticles for catalyzing the hydrogenation of 4-carboxybenzaldehyde. Catal. Commun. 2008, 9, 2257–2260. [Google Scholar] [CrossRef]
- Li, K.T.; Wang, C.H.; Wang, H.C. Hydrogenolysis of glycerol to 1,2-propane diol on copper core–porous silica shell nanoparticles. J. Taiwan Inst. Chem. Eng. 2015, 52, 79–84. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, J.; Xu, Y.; Xu, L.; Li, H. Palladium nanoparticles encapsulated in porous silica shells: An efficient and highly stable catalyst for CO oxidation. RSC Adv. 2013, 3, 851–858. [Google Scholar] [CrossRef]
- Bonet, F.; Delmas, V.; Grugeon, S.; Herrara Urbina, R.; Silvert, P.Y.; Tekaia-Elhsissen, K. Synthesis of monodisperse Au, Pt, Ru and Ir nanoparticles in ethylene glycerol. Nanostruct. Mater. 1999, 11, 1277–1284. [Google Scholar] [CrossRef]
- Bachiller-Baeza, B.; Guerero-Ruiz, A.; Rodriguez-Ramos, I. Ruhtenium-supported catalysts for the selectoselective hydrogenation of paracetamol to 4-trans-acetamidocyclohexanol: Effect of support, metal precursor, and solvent. J. Catal. 2005, 229, 439–445. [Google Scholar] [CrossRef]
- Shozi, M.L.; Dasireddy, V.D.B.C.; Singh, S.; Mohlala, P.; Morgan, D.J.; Iqbal, S.; Friedrich, H.B. An investigation of Cu-Re-ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions. Sustain. Energy Fuels 2017, 1, 1437–1445. [Google Scholar] [CrossRef]
- Koopman, P.G.J.; Kieboom, A.P.G.; van Bekkum, H. Activation of ruthenium on silica hydrogenation catalysts. React. Kinet. Catal. Lett. 1978, 8, 389–393. [Google Scholar] [CrossRef]
- Satterfield, C.N. Heterogeneous Catalysis in Industrial Practice; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Reinikainen, M.; Niemela, M.K.; Kakuta, N.; Suhonen, S. Characterisation and activity evaluation of silica supported cobalt and ruthenium catalysts. Appl. Catal. A Gen. 1998, 174, 61–75. [Google Scholar] [CrossRef]
- Chia, M.; O’Neill, B.J.; Dietrich, P.J.; Riberio, F.H.; Mille, J.T.; Dumesic, J.A. Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals. J. Catal. 2013, 308, 226–236. [Google Scholar]
- Chia, M.; Pagan-Torres, Y.J.; Hibbits, D.; Tan, Q.; Pham, H.N.; Datye, A.K.; Neurock, M.; Davies, R.J.; Dumesic, J.A. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalyst. J. Am. Chem. Soc. 2011, 133, 12675–12689. [Google Scholar] [CrossRef] [PubMed]
- Amada, Y.; Koso, S.; Nakagawa, Y.; Tomishige, K. Hydrogenolysis of 1,2-propanediol for the production of biopropanols from glycerol. ChemSusChem 2010, 3, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, F.; Vinci, A.; Espro, C.; Gumina, B.; Musolino, M.G.; Pietropaolo, R. Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Catal. Sci. Technol. 2015, 5, 4466–4473. [Google Scholar]
- Peng, B.; Zhao, C.; Mejía-Centeno, I.; Fuentes, G.A.; Jentys, A.; Lercher, J.A. Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3. Catal. Today 2012, 183, 3–9. [Google Scholar] [CrossRef]
- Wawrzetz, A.; Peng, B.; Hrabar, A.; Jentys, A.; Lemonidou, A.A.; Lercher, J.A. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol. J. Catal. 2010, 269, 411–420. [Google Scholar] [CrossRef]
Reaction Temp. (°C) | 110 | 120 | 125 | 130 | 160 |
---|---|---|---|---|---|
conversion (%) | 27.42 | 34.59 | 45.06 | 72.16 | 100.00 |
methanol sel. (%) | 0.65 | 0.36 | 0.49 | 0.34 | 0 |
isopropanol sel. (%) | 2.59 | 2.19 | 3.43 | 3.44 | 0 |
ethanol sel. (%) | 3.94 | 5.15 | 5.83 | 7.89 | 0 |
n-propanol sel. (%) | 15.94 | 19.12 | 8.18 | 16.42 | 0 |
1.2-PDO sel. (%) | 63.36 | 58.29 | 64.77 | 35.16 | 0 |
EG sel. (%) | 4.50 | 5.76 | 6.64 | 4.72 | 0 |
1.3-PDO sel. (%) | 8.53 | 8.05 | 2.89 | 4.31 | 0 |
Overall liquid product sel. (%) | 99.50 | 98.92 | 92.23 | 72.27 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.-T.; Yen, R.-H. Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles. Nanomaterials 2018, 8, 153. https://doi.org/10.3390/nano8030153
Li K-T, Yen R-H. Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles. Nanomaterials. 2018; 8(3):153. https://doi.org/10.3390/nano8030153
Chicago/Turabian StyleLi, Kuo-Tseng, and Ruey-Hsiang Yen. 2018. "Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles" Nanomaterials 8, no. 3: 153. https://doi.org/10.3390/nano8030153
APA StyleLi, K. -T., & Yen, R. -H. (2018). Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles. Nanomaterials, 8(3), 153. https://doi.org/10.3390/nano8030153