Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Material Preparations
2.2. Material Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Electrochemical Performances
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243. [Google Scholar] [CrossRef]
- Xin, S.; Guo, Y.; Wan, L. Nanocarbon networks for advanced rechargeable lithium batteries, Accounts of chemical research. Accounts Chem. Res. 2012, 45, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhu, Y.; Hou, Y.; Liu, L.; Wu, Y.; Loh, K.P.; Zhang, H.; Zhu, K. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ. Sci. 2013, 6, 2093. [Google Scholar] [CrossRef]
- Amine, K.; Kanno, R.; Tzeng, Y. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bull. 2014, 39, 395–401. [Google Scholar] [CrossRef]
- Vilatela, J.J.; Eder, D. Nanocarbon composites and hybrids in sustainability: A review. ChemSusChem 2012, 5, 456–478. [Google Scholar] [CrossRef] [PubMed]
- Elia, G.A.; Park, J.-B.; Sun, Y.-K.; Scrosati, B.; Hassoun, J. Role of the Lithium Salt in the Performance of Lithium-Oxygen Batteries: A Comparative Study. ChemElectroChem 2014, 1, 47–50. [Google Scholar] [CrossRef]
- Srivastava, M.; Singh, J.; Kuila, T.; Layek, R.K.; Kim, N.H.; Lee, J.H. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 2015, 7, 4820–4868. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, L.; Lou, X.W.D. Metal Oxide Hollow Nanostructures for Lithium-ion Batteries. Adv. Mater. 2012, 24, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Zhang, W. The lithium storage properties of potassium octatitanate as anode materials for lithium-ion batteries. Mater. Lett. 2017, 190, 177–180. [Google Scholar] [CrossRef]
- Dhanabalan, A.; Li, X.; Agrawal, R.; Chen, C.; Wang, C. Fabrication and Characterization of SnO(2)/Graphene Composites as High Capacity Anodes for Li-Ion Batteries. Nanomaterials 2013, 3, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.; Karunakaran, G.; Kolesnikov, E.; Sergeevna, V.E.; Kumari, S.; Gorshenkov, M.V.; Kuznetsov, D. Hollow NiCo2O4 nano-spheres obtained by ultrasonic spray pyrolysis method with wuperior electrochemical performance for lithium-ion batteries and supercapacitors. J. Ind. Eng. Chem. 2018, 59, 90–98. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A.A. Nanostructured MnO(2) as Electrode Materials for Energy Storage. Nanomaterials 2017, 7. [Google Scholar] [CrossRef]
- Kundu, M.; Karunakaran, G.; Kolesnikov, E.; Dmitry, A.; Gorshenkov, M.V.; Kuznetsov, D. Hollow (Co0.62Fe1.38)FeO4/NiCo2O4 nanoboxes with porous shell synthesized via chemical precipitation: A novel form as a high performance lithium ion battery anode. Microporous Mesoporous Mater. 2017, 247, 9–15. [Google Scholar] [CrossRef]
- Iturrondobeitia, A.; Goni, A.; Gil de Muro, I.; Lezama, L.; Rojo, T. Physico-Chemical and Electrochemical Properties of Nanoparticulate NiO/C Composites for High Performance Lithium and Sodium Ion Battery Anodes. Nanomaterials 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Chu, Y.; Li, L.; Yu, Q.; Zhu, Y.; Liu, G.; Hou, Q.; Zeng, R.; Zhao, L. Self-assembled Co3O4 nanostructure with controllable morphology towards high performance anode for lithium ion batteries. Electrochim. Acta 2016, 188, 909–916. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.; Zhang, H.; Wang, X.; Wang, Y.; Jiao, L.; Yuan, H. Controllable synthesis of Cu-doped CoO hierarchical structure for high performance lithium-ion battery, Journal of Power Sources. J. Power Sources 2016, 314, 66–75. [Google Scholar] [CrossRef]
- Xue, X.Y.; Yuan, S.; Xing, L.L.; Chen, Z.H.; He, B.; Chen, Y.J. Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes. Chem. Commun. 2011, 47, 4718–4720. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Zhang, H.; Chen, B.D.; Wu, J.B.; Ma, X.Y.; Liu, Z.H.; Zhang, Y.Q.; Yang, D.R.; Huang, X.H.; Tu, J.P. Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li-Battery Applications. Adv. Mater. 2007, 19, 4505–4509. [Google Scholar] [CrossRef]
- Liu, J.; Xia, H.; Lu, L.; Xue, D. Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J. Mater. Chem. 2010, 20, 1506. [Google Scholar] [CrossRef]
- Wang, J.; Yang, N.; Tang, H.; Dong, Z.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H.; Tang, Z.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. 2013, 52, 6417–6420. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X.W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shang, K.; Zhou, W.; Tan, L.; Pan, X.; Liao, M.; Lei, J.; Zhao, L. Honeycomb-Spherical Co3O4-TiO2 Hybrid Materials for Enhanced Lithium Storage. Electrochim. Acta 2016, 222, 1642–1649. [Google Scholar] [CrossRef]
- Guan, X.; Nai, J.; Zhang, Y.; Wang, P.; Yang, J.; Zheng, L.; Zhang, J.; Guo, L. CoO Hollow Cube/Reduced Graphene Oxide Composites with Enhanced Lithium Storage Capability. Chem. Mater. 2014, 26, 5958–5964. [Google Scholar] [CrossRef]
- Leng, X.; Ding, X.; Hu, J.; Wei, S.; Jiang, Z.; Lian, J.; Wang, G.; Jiang, Q.; Liu, J. In situ prepared reduced graphene oxide/CoO nanowires mutually-supporting porous structure with enhanced lithium storage performance. Electrochim. Acta 2016, 190, 276–284. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2012, 116, 20794–20799. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, X.; Jing, M.; Hou, H.; Zhu, Y.; Fang, L.; Yang, X.; Chen, Q.; Banks, C.E. Carbon dots supported upon N-doped TiO2nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 2015, 3, 5648–5655. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, Y.; Shen, J.; Yang, X.; Li, C. CoO nanosheets derived from electrodeposited cobalt metal towards high performance lithium ion batteries. Electrochim. Acta 2016, 222, 1300–1307. [Google Scholar] [CrossRef]
- Yuan, W.; Zhao, M.; Yuan, J.; Li, C.M. Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode. J. Power Sources 2016, 319, 159–167. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, J.; Ding, R.; Ji, X.; Hu, Y.; Li, X.; Hu, A.; Wu, F.; Zhu, Z.; Huang, X. Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes. J. Phys. Chem. C 2010, 114, 929–932. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, J.; Jiang, F.; Su, Q.; Zhang, J.; Du, G. Growth of hierarchal porous CoO nanowire arrays on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. J. Alloys Compd. 2016, 655, 372–377. [Google Scholar] [CrossRef]
- Huang, X.; Wang, R.; Xu, D.; Wang, Z.; Wang, H.; Xu, J.; Wu, Z.; Liu, Q.; Zhang, Y.; Zhang, X. Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries. Adv. Funct. Mater. 2013, 23, 4345–4353. [Google Scholar] [CrossRef]
- Cao, K.; Jiao, L.; Liu, Y.; Liu, H.; Wang, Y.; Yuan, H. Ultra-High Capacity Lithium-Ion Batteries with Hierarchical CoO Nanowire Clusters as Binder Free Electrodes. Adv. Funct. Mater. 2015, 25, 1082–1089. [Google Scholar] [CrossRef]
- Li, D.; Ding, L.-X.; Wang, S.; Cai, D.; Wang, H. Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability. J. Mater. Chem. A 2014, 2, 5625–5630. [Google Scholar] [CrossRef]
- Chen, M.; Xia, X.; Qi, M.; Yuan, J.; Yin, J.; Chen, Q. Self-suppported porous CoO semisphere arrays as binder-free electrodes for high-performance lithium ion batteries. Mater. Res. Bull. 2016, 73, 125–129. [Google Scholar] [CrossRef]
- Stevens, G.C.; Edmonds, T. Catalytic activity of the basal and edge planes of molybdenum disulphide, Journal of the Less-Common Metals. J. Less-Common Met. 1977, 54, 321–330. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, R.; He, M.; Lang, J.; Xu, S.; Yan, X. 3D Hierarchical Co/CoO-Graphene-Carbonized Melamine Foam as a Superior Cathode toward Long-Life Lithium Oxygen Batteries. Adv. Funct. Mater. 2016, 26, 1354–1364. [Google Scholar] [CrossRef]
- Vempati, S.; Shetty, A.; Dawson, P.; Nanda, K.K.; Krupanidhi, S.B. Solution-based synthesis of cobalt-doped ZnO thin films. Thin Solid Films 2012, 524, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Zhang, H.; Du, N.; Yang, D. Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J. Mater. Chem. A 2013, 1, 2337. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, J.; Guo, R.; Lin, Y.; Zhang, P. Aligned nickel–cobalt oxide nanosheet arrays for lithium ion battery applications. Int. J. Hydrogen Energy 2014, 39, 21399–21404. [Google Scholar] [CrossRef]
- Qin, Y.; Li, Q.; Xu, J.; Wang, X.; Zhao, G.; Liu, C.; Yan, X.; Long, Y.; Yan, S.; Li, S. CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 2017, 224, 90–95. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, H.; Lu, L.; Lin, J. Excellent Performance in Lithium-Ion Battery Anodes: Rational Synthesis of Co(CO3)0.5(OH)0.11H2O Nanobelt Array and Its Conversion into Mesoporous and Single-Crystal Co3O4. ACS Nano 2010, 4, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Agubra, V.A.; Zuniga, L.; Flores, D.; Campos, H.; Villarreal, J.; Alcoutlabi, M. A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochim. Acta 2017, 224, 608–621. [Google Scholar] [CrossRef]
- Zhan, L.; Wang, S.; Ding, L.-X.; Li, Z.; Wang, H. Binder-free Co-CoOx nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life. J. Mater. Chem. A 2015, 3, 19711–19717. [Google Scholar] [CrossRef]
- Ponrouch, A.; Taberna, P.-L.; Simon, P.; Palacín, M.R. On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim. Acta 2012, 61, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.Y.; Liu, Z.; Nam, K.W.; Borkiewicz, O.J.; Cheng, J.; Hua, X.; Dunstan, M.T.; Yu, X.; Wiaderek, K.M.; Du, L.S.; et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J.M. On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential. J. Electrochem. Soc. 2002, 149, A627. [Google Scholar] [CrossRef]
- Jing, S.; Jiang, H.; Hu, Y.; Li, C. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale 2014, 6, 14441–14445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Xu, K.; Jow, T.R. Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 2004, 49, 1057–1061. [Google Scholar] [CrossRef]
- Xu, G.B.; Yang, L.W.; Wei, X.L.; Ding, J.W.; Zhong, J.X.; Chu, P.K. Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. J. Power Sources 2015, 295, 305–313. [Google Scholar] [CrossRef]
Materials | Performance | Reference | ||
---|---|---|---|---|
CoO | nanoflakes | 1776 mA h g−1 after 80 cycles | At 100 mA g−1 | This work |
CoO | nanowire clusters | 1249 mA h g−1 after 50 cycles | At 200 mA g−1 | [33] |
CoO | nanowire arrays | 1300 mA h g−1 after 90 cycles | At 100 mA g−1 | [31] |
CoO | nanosheet arrays | 1000 mA h g−1 after 100 cycles | At 1000 mA g−1 | [34] |
CoO | semisphere arrays | 695 mA h g−1 after 150 cycles | At 500 mA g−1 | [35] |
CoO | Cu-doped | 800 mA h g−1 after 80 cycles | At 500 mA g−1 | [17] |
CoO | nanosheets | 637 mA h g−1 after 200 cycles | At 100 mA g−1 | [28] |
Samples | Co (mg) | Average (mg) |
---|---|---|
NF-1 | 2.256 | 2.021 |
NF-2 | 1.785 | |
FL-1 | 1.246 | 1.161 |
FL-2 | 1.076 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, M.; Zhang, Q.; Tang, F.; Xu, Z.; Zhou, X.; Li, Y.; Zhang, Y.; Yang, C.; Ru, Q.; Zhao, L. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries. Nanomaterials 2018, 8, 183. https://doi.org/10.3390/nano8040183
Liao M, Zhang Q, Tang F, Xu Z, Zhou X, Li Y, Zhang Y, Yang C, Ru Q, Zhao L. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries. Nanomaterials. 2018; 8(4):183. https://doi.org/10.3390/nano8040183
Chicago/Turabian StyleLiao, Mingna, Qilun Zhang, Fengling Tang, Zhiwei Xu, Xin Zhou, Youpeng Li, Yali Zhang, Chenghao Yang, Qiang Ru, and Lingzhi Zhao. 2018. "Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries" Nanomaterials 8, no. 4: 183. https://doi.org/10.3390/nano8040183
APA StyleLiao, M., Zhang, Q., Tang, F., Xu, Z., Zhou, X., Li, Y., Zhang, Y., Yang, C., Ru, Q., & Zhao, L. (2018). Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries. Nanomaterials, 8(4), 183. https://doi.org/10.3390/nano8040183