Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure
Abstract
:1. Introduction
2. Materials and Methods
Experimental Procedure of Sample Fabrication and Characterization
3. Results and Discussion
3.1. Scaning Electron Microscopy Analysis
3.2. Transmission Electron Microscopy Characterization
3.3. Atomic Force Microscopy and Magnetic Force Microscopy Imaging
3.4. Magneto-Optical Kerr Effect Hysteresis Loops
3.5. Vibrating Sample Magnetometer Hysteresis Loops
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stamps, R.L.; Breitkreutz, S.; Akerman, J.; Chumak, A.V.; Otani, Y.; Bauer, G.E.W.; Thiele, J.-U.; Bowen, M.; Majetich, S.A.; Klaui, M.; et al. The 2014 Magnetism Roadmap. J. Phys. D Appl. Phys. 2014, 47, 333001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gilbert, I.; Nisoli, C.; Chern, G.W.; Erickson, M.J.; O’Brien, L.; Leighton, C.; Lammenrt, P.E.; Crespi, V.H.; Schiffer, P. Crystallites of magnetic charges in artificial spin ice. Nature 2013, 500, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Heyderman, L.J. Artificial spin ice: Crystal-clear order. Nat. Nanotechnol. 2013, 8, 705–706. [Google Scholar] [CrossRef] [PubMed]
- Laguna, M.F.; Balseiro, C.A.; Domínguez, D.; Nori, F. Vortex structure and dynamics in kagomé and triangular pinning potentials. Phys. Rev. B 2001, 64, 104505. [Google Scholar] [CrossRef]
- Abad, A.; Corma, A.; García, H. Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols. Pure Appl. Chem. 2007, 79, 1847–1854. [Google Scholar] [CrossRef]
- Mengotti, E.; Heyderman, L.J.; Rodriguez, A.F.; Nolting, F.; Hugli, R.V.; Braun, H.B. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 2011, 7, 68–74. [Google Scholar] [CrossRef]
- Ünal, A.A.; Valencia, S.; Radu, F.; Marchenko, D.; Merazzo, K.J.; Vázquez, M.; Sánchez-Barriga, J. Ferrimagnetic DyCo5 Nanostructures for Bits in Heat-Assisted Magnetic Recording. Phys. Rev. Appl. 2016, 5, 064007. [Google Scholar] [CrossRef]
- Cowburn, R.P.; Adeyeye, A.O.; Bland, J.A.C. Magnetic domain formation in lithographically defined antidot Permalloy arrays. Appl. Phys. Lett. 1997, 70, 2309–2311. [Google Scholar] [CrossRef]
- Metaxas, P.J.; Sushruth, M.; Begley, R.A.; Ding, J.; Woodward, R.C.; Maksymov, I.S.; Albert, M.; Wang, W.; Fangohr, H.; Adeyeye, A.O.; et al. Sensing magnetic nanoparticles using nano-confined ferromagnetic resonances in a magnonic crystal. Appl. Phys. Lett. 2015, 106, 232406. [Google Scholar] [CrossRef]
- Yu, H.; Duerr, G.; Huber, R.; Bahr, M.; Schwarze, T.; Brandl, F.; Grundler, D. Omni directional spin-wave nanograting coupler. Nat. Commun. 2013, 4, 2702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, J.; Ding, X.; Pernod, P.; Tiercelin, N.; Song, Y. Tunable Magneto-Optical Kerr Effect of Nanoporous Thin Films. Sci. Rep. 2017, 7, 2888. [Google Scholar] [CrossRef] [PubMed]
- Coïsson, M.; Federica Celegato, F.; Gabriele Barrera, G.; Gianluca Conta, G.; Alessandro Magni, A.; Paola Tiberto, P. Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni80Fe20 Antidot Matrix: Synthesis by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties. Nanomaterials 2017, 7, 232. [Google Scholar] [CrossRef] [PubMed]
- Haering, F.; Wiedwald, U.; Nothelfer, S.; Koslowski, B.; Ziemann, P.; Lechner, L.; Wallucks, A.; Lebecki, K.; Nowak, U.; Gräfe, J.; et al. Switching modes in easy and hard axis magnetic reversal in a self-assembled antidot array. Nanotechnology 2013, 24, 465709. [Google Scholar] [CrossRef] [PubMed]
- Prida, V.M.; Salaheldeen, M.; Pfitzer, G.; Hildalgo, A.; Vega, V.; González, S.; Teixeira, J.M.; Fernández, A.; Hernando, B. Template Assisted Deposition of Ferromagnetic Nanostructures: From Antidot Thin Films to Multisegmented Nanowires. Acta Phys. Pol. A 2017, 131, 822–827. [Google Scholar] [CrossRef]
- Gräfe, J.; Schütz, G.; Goering, E.J. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films. J. Magn. Magn. Mater. 2016, 419, 517–520. [Google Scholar] [CrossRef]
- Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef] [PubMed]
- Prida, V.M.; Pirota, K.R.; Navas, D.; Asenjo, A.; Hernández-Vélez, M.; Vázquez, M. Self-organized magnetic nanowire arrays based on alumina and titania templates. J. Nanosci. Nanotechnol. 2007, 7, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Béron, F.; Pirota, K.R.; Vega, V.; Prida, V.M.; Fernández, A.; Hernando, B.; Knobel, M. An effective method to probe local magnetostatic properties in a nanometric FePd antidot array. New J. Phys. 2011, 13, 013035. [Google Scholar] [CrossRef]
- López-Antón, R.; Vega, V.; Prida, V.M.; Fernández, A.; Pirota, K.R.; Vázquez, M. Magnetic properties of hexagonally ordered arrays of Fe antidots by vacuum thermal evaporation on nanoporous alumina templates. Solid State Phenom. 2009, 152–153, 273–276. [Google Scholar] [CrossRef]
- Rahman, M.T.; Shams, N.N.; Wang, D.S.; Lai, C.H. Enhanced exchange bias in sub-50-nm IrMn/CoFe nanostructure. Appl. Phys. Lett. 2009, 94, 082503. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Han, C.Y.; Welp, U.; Wang, H.H.; Vlasko-Vlasov, V.K.; Kwok, W.K.; Miller, D.J.; Hiller, J.M.; Cook, R.E.; Willing, G.A.; et al. Nickel antidot arrays on anodic alumina substrates. Appl. Phys. Lett. 2002, 81, 2869. [Google Scholar] [CrossRef]
- Mansuripur, M.J. Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices. Appl. Phys. 1990, 67, 6466. [Google Scholar] [CrossRef]
- Gräfe, J.; Haering, F.; Tietze, T.; Audehm, P.; Weigand, M.; Wiedwald, U.; Ziemann, P.; Gawroński, P.; Schütz, G.; Goering, E.J. Perpendicular magnetisation from in-plane fields in nano-scaled antidot lattices. Nanotechnology 2015, 26, 225203. [Google Scholar] [CrossRef] [PubMed]
- Cowburn, R.P.; Adeyeye, A.O.; Bland, J.A.C. Magnetic switching and uniaxial anisotropy in lithographically defined anti-dot Permalloy arrays. J. Magn. Magn. Mater. 1997, 173, 193–201. [Google Scholar] [CrossRef]
- Ambrose, M.C.; Stamps, R.L. Magnetic stripe domain pinning and reduction of in-plane magnet order due to periodic defects in thin magnetic films. J. Magn. Magn. Mater. 2013, 344, 140–147. [Google Scholar] [CrossRef]
- Van de Wiele, B.; Manzin, A.; Vansteenkiste, A.; Bottauscio, O.; Dupre, L.; De Zutter, D. A micromagnetic study of the reversal mechanism in permalloy antidot arrays. J. Appl. Phys. 2012, 111, 053915. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.; Stohr, J.; Nakajima, R.; Carl, A.; Samant, M.G.; Chappert, C.; Megy, R.; Beauvillain, P.; Veillet, P.; Held, G.A. Microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism. Phys. Rev. Lett. 1995, 75, 3752–3755. [Google Scholar] [CrossRef] [PubMed]
- Baudelet, F.; Lin, M.T.; Kuch, W.; Meinel, K.; Choi, B.; Schneider, C.M.; Kirschner, J. Perpendicular anisotropy and spin reorientation in epitaxial Fe/Cu3Au(100) thin films. Phys. Rev. B 1995, 51, 12563–12578. [Google Scholar] [CrossRef]
- Navas, D.; Hernández-Vélez, M.; Vázquez, M.; Lee, W.; Nielsch, K. Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy. Appl. Phys. Lett. 2007, 90, 192501. [Google Scholar] [CrossRef]
- Vavassori, P.; Gubbiotti, G.; Zangari, G.; Yu, C.T.; Yin, H.; Jiang, H.; Mankey, G.J. Lattice symmetry and magnetization reversal in micron-size antidot arrays in Permalloy film. J. Appl. Phys. 2002, 91, 7992. [Google Scholar] [CrossRef]
- Wang, C.C.; Adeyeye, A.O.; Singh, N. Magnetic antidot nanostructures: Effect of lattice geometry. Appl. Phys. Lett. 2006, 88, 222506. [Google Scholar] [CrossRef]
- Merazzo, K.J.; Castan-Guerrero, C.; Herrero-Albillos, J.; Kronast, F.; Bartolome, F.; Bartolome, J.; Sese, J.; del Real, R.P.; Garcia, L.M.; Vazquez, M. X-ray photoemission electron microscopy studies of local magnetization in Py antidot array thin films. Phys. Rev. B 2012, 85, 184427. [Google Scholar] [CrossRef]
- Merazzo, K.J.; Leitao, D.C.; Jimenéz, E.; Araujo, J.P.; Camarero, J.; del Real, R.P.; Asenjo, A.; Vázquez, M. Geometry-dependent magnetization reversal mechanism in ordered Py antidot arrays. J. Phys. D Appl. Phys. 2011, 44, 505001. [Google Scholar] [CrossRef]
t (nm) | d (nm) | r | Keff (erg/cm3) | |
---|---|---|---|---|
Antidots | Thin Film | |||
20 | 56 | 3.3 | 2.7 × 105 | 3.5 × 106 |
30 | 45 | 2.2 | −1.2 × 106 | 7.4 × 106 |
50 | 15 | 0.9 | 1.2 × 106 | 8.0 × 106 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salaheldeen, M.; Vega, V.; Ibabe, A.; Jaafar, M.; Asenjo, A.; Fernandez, A.; Prida, V.M. Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure. Nanomaterials 2018, 8, 227. https://doi.org/10.3390/nano8040227
Salaheldeen M, Vega V, Ibabe A, Jaafar M, Asenjo A, Fernandez A, Prida VM. Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure. Nanomaterials. 2018; 8(4):227. https://doi.org/10.3390/nano8040227
Chicago/Turabian StyleSalaheldeen, Mohamed, Victor Vega, Angel Ibabe, Miriam Jaafar, Agustina Asenjo, Agustin Fernandez, and Victor M. Prida. 2018. "Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure" Nanomaterials 8, no. 4: 227. https://doi.org/10.3390/nano8040227
APA StyleSalaheldeen, M., Vega, V., Ibabe, A., Jaafar, M., Asenjo, A., Fernandez, A., & Prida, V. M. (2018). Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure. Nanomaterials, 8(4), 227. https://doi.org/10.3390/nano8040227