A Method for Efficient Loading of Ciprofloxacin Hydrochloride in Cationic Solid Lipid Nanoparticles: Formulation and Microbiological Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preformulation Studies
2.2. Characterization of SLN
2.3. Stability Tests
2.4. Microbiological Assay
3.1. Material and Methods
3.2. Preparation of the SLN by Solvent Injection
3.3. Characterization of SLN
3.3.1. Scanning Electron Microscopy
3.3.2. Determination of Encapsulation Efficiency (EE%) and Drug Loading (DL)
3.3.3. Stability
3.4. Antimicrobial Assay
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gutiérrez-Castrellón, P.; Díaz-García, L.; De Colsa-Ranero, A.; Cuevas-Alpuche, J.; Jiménez-Escobar, I. Efficacy and safety of ciprofloxacin treatment in urinary tract infections (UTIs) in adults: A systematic review with meta-analysis. Gac. Med. Mexico 2015, 151, 210–228. [Google Scholar]
- Connett, G.J.; Pike, K.C.; Legg, J.P.; Cathie, K.; Dewar, A.; Foote, K.; Harris, A.; Faust, S.N. Ciprofloxacin during upper respiratory tract infections to reduce Pseudomonas aeruginosa infection in paediatric cystic fibrosis: A pilot study. Ther. Adv. Respir. Dis. 2015, 9, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Al-Mahallawi, A.M.; Khowessah, O.M.; Shoukri, R.A. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int. J. Pharm. 2017, 522, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Charoo, N.A.; Kohli, K.; Ali, A.; Anwer, A. Ophthalmic delivery of ciprofloxacin hydrochloride from different polymer formulations: In vitro and in vivo studies. Drug Dev. Ind. Pharm. 2003, 29, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.P.; Bagui, M.; Tamboli, V.; Mitra, A.K. Recent applications of liposomes in ophthalmic drug delivery. J. Drug Deliv. 2011, 2011, 863734. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Khurshid, M.; Saleem, H.G.; Javed, H.; Khan, A.A. Characteristics and antibiotic resistance of urinary tract pathogens isolated from Punjab, Pakistan. Jundishapur J. Microbiol. 2015, 8, e19272. [Google Scholar] [CrossRef] [PubMed]
- Mandras, N.; Tullio, V.; Furneri, P.M.; Roana, J.; Allizond, V.; Scalas, D.; Cuffini, A.M. Key Roles of Human Polymorphonuclear Cells and Ciprofloxacin in Lactobacillus Species Infection Control. Antimicrob. Agents Chemother. 2016, 60, 1638–1641. [Google Scholar] [CrossRef] [PubMed]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. Mechanisms of resistance to quinolones. Clin. Infect. Dis. 2005, 41 (Suppl. 2), S120–S126. [Google Scholar] [CrossRef] [PubMed]
- Forier, K.; Raemdonck, K.; De Smedt, S.C.; Demeester, J.; Coenye, T.; Braeckmans, K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release 2014, 190, 607–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J. Pharm. Sci. 2015, 104, 872–905. [Google Scholar] [CrossRef] [PubMed]
- Pachuau, L. Recent developments in novel drug delivery systems for wound healing. Expert Opin. Drug Deliv. 2015, 12, 1895–1909. [Google Scholar] [CrossRef] [PubMed]
- Furneri, P.M.; Fuochi, V.; Pignatello, R. Lipid-based nanosized Delivery Systems for fluoroquinolones: A review. Curr. Pharm. Des. 2017, 23, 6696–6704. [Google Scholar] [CrossRef] [PubMed]
- Furneri, P.M.; Petronio, G.P.; Fuochi, V.; Cupri, S.; Pignatello, R. Nanosized devices as antibiotics and antifungals delivery: Past, news, and outlook. In Nanostructures for Drug Delivery. A Volume in Micro and Nano Technologies; Andronescu, E., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, Netherlands, 2017; pp. 697–748. ISBN 978-0-323-46143-6. [Google Scholar]
- Pignatello, R.; Fuochi, V.; Petronio, G.; Greco, A.S.; Furneri, P.M. Formulation and characterization of erythromycin–loaded Solid Lipid Nanoparticles. Biointerface Res. Appl. Chem. 2017, 7, 2145–2150. [Google Scholar]
- Loxley, A. Solid Lipid Nanoparticles for the Delivery of Pharmaceutical Actives. Drug Deliv. Technol. 2009, 9 (Suppl. 8), 32. [Google Scholar]
- Carbone, C.; Leonardi, A.; Cupri, S.; Puglisi, G.; Pignatello, R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm. Pat. Anal. 2014, 3, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Amaral, M.H.; Sousa Lobo, J.M.; Almeida, H. Applications of Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): State of the Art (Editorial). Curr. Pharm. Des. 2017. [Google Scholar] [CrossRef] [PubMed]
- Garud, A.; Singh, D.; Garud, N. Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications. Int. Curr. Pharm. J. 2012, 1, 9384–9393. [Google Scholar] [CrossRef]
- Gokce, E.H.; Ozyazici, M.; Souto, E.B. Nanoparticulate strategies for effective delivery of poorly soluble therapeutics. Ther. Deliv. 2010, 1, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, W.; Mader, K. Solid lipid nanoparticles-Production, characterization and applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef]
- Carbone, C.; Cupri, S.; Leonardi, A.; Puglisi, G.; Pignatello, R. Lipid-based nanocarriers for drug delivery and targeting: A patent survey of methods of production and characterization. Pharm. Pat. Anal. 2013, 2, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.; Offerta, A.; Carbone, C.; Bonina, F.; Pignatello, R.; Puglisi, G. Lipid Nanocarriers (LNC) and their applications in ocular drug delivery. Curr. Med. Chem. 2015, 22, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, R.; Carbone, C.; Puglia, C.; Offerta, A.; Bonina, F.P.; Puglisi, G. Ophthalmic applications of lipid-based drug nanocarriers: An update of research and patenting activity. Ther. Deliv. 2015, 6, 1297–1318. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Banerjee, R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 86, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Agrawal, Y.K.; Garala, K.; Ramkishan, A. Solid Lipid Nanoparticles of a Water Soluble Drug, Ciprofloxacin Hydrochloride. Indian J. Pharm. Sci. 2012, 74, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Khattar, H.; Singh, S.; Murthy, R.S.R. Formulation and Characterization of Nano Lipid Carrier Dry Powder Inhaler Containing Ciprofloxacin Hydrochloride and N-Acetyl Cysteine. Int. J. Drug Deliv. 2012, 4, 316–325. [Google Scholar]
- Shah, M.; Agrawal, Y. Ciprofloxacin hydrochloride-loaded glyceryl monostearate nanoparticle: Factorial design of Lutrol F68 and Phospholipon 90G. J. Microencapsul. 2012, 29, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Agrawal, Y. Development of ciprofloxacin HCl-based Solid Lipid Nanoparticles using Ouzo Effect: An experimental optimization and comparative study. J. Dispers. Sci. Technol. 2013, 34, 37–46. [Google Scholar] [CrossRef]
- Gandomi, N.; Aboutaleb, E.; Noori, M.; Atyabi, F.; Fazeli, M.R.; Farbod, E.; Jamalifar, H.; Dinarvanda, R. Solid lipid nanoparticles of ciprofloxacin hydrochloride with enhanced antibacterial activity. J. Nanosci. Lett. 2012, 2, 21. [Google Scholar]
- Shazly, G.A. Ciprofloxacin controlled- solid lipid nanoparticles: Characterization, in vitro release, and antibacterial activity assessment. BioMed. Res. Int. 2017, 2017, 2120734. [Google Scholar] [PubMed]
- Sharma, A.; Sood, A.; Mehta, V.; Malairaman, U. Formulation and physicochemical evaluation of nanostructured lipid carrier for codelivery of clotrimazole and ciprofloxacin. Asian J. Pharm. Clin. Res. 2016, 9, 356–360. [Google Scholar]
- Pandita, D.; Ahuja, A.; Velpandian, T.; Lather, V.; Dutta, T.; Khar, R.K. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique. Die Pharm. Int. J. Pharm. Sci. 2009, 64, 301–310. [Google Scholar]
- Yadav, N.; Khatak, S.; Sara, U.V.S. Solid Lipid Nanoparticles. A review. Int. J. Appl. Pharm. 2013, 5, 8–18. [Google Scholar]
- Pignatello, R.; Bucolo, C.; Ferrara, P.; Maltese, A.; Puleo, A.; Puglisi, G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur. J. Pharm. Sci. 2002, 16, 53–61. [Google Scholar] [CrossRef]
- Pignatello, R.; Bucolo, C.; Spedalieri, G.; Maltese, A.; Puglisi, G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 2002, 23, 3247–3255. [Google Scholar] [CrossRef]
- Bucolo, C.; Maltese, A.; Maugeri, F.; Puglisi, G.; Busà, B.; Pignatello, R. Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene. J. Pharm. Pharmacol. 2004, 56, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, R.; Leonardi, A.; Cupri, S. Optimization and validation of a new method for the production of lipid nanoparticles for ophthalmic application. Int. J. Med. Nano Res. 2014, 1, 1–6. [Google Scholar] [CrossRef]
- Leonardi, A.; Crascì, L.; Panico, A.; Pignatello, R. Antioxidant activity of idebenone-loaded neutral and cationic solid lipid nanoparticles. Pharm. Dev. Technol. 2015, 20, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, A.; Bucolo, C.; Romano, G.L.; Platania, C.B.; Drago, F.; Puglisi, G.; Pignatello, R. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int. J. Pharm. 2014, 470, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, A.; Bucolo, C.; Drago, F.; Salomone, S.; Pignatello, R. Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. Int. J. Pharm. 2015, 478, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Varanda, F.; Pratas de Melo, M.J.; Cacüo, A.I.; Dohrn, R.; Foteini, A.M.; Voutsas, E.; Tassios, D.; Marrucho, I.M. Solubility of Antibiotics in Different Solvents. 1. Hydrochloride Forms of Tetracycline, Moxifloxacin, and Ciprofloxacin. Ind. Eng. Chem. Res. 2006, 45, 6368–6374. [Google Scholar] [CrossRef]
- Caço, A.I.; Varanda, F.; Pratas de Melo, M.J.; Dias, A.M.A.; Dohrn, R.; Marrucho, I.M. Solubility of Antibiotics in Different Solvents. Part II. Non-Hydrochloride Forms of Tetracycline and Ciprofloxacin. Ind. Eng. Chem. Res. 2008, 47, 8083–8089. [Google Scholar] [CrossRef]
- EMA/CHMP/ICH/82260/2006. ICH Guideline Q3C (R6) on Impurities: Guideline for Residual Solvents Step 5; European Medicines Agency: London, UK, 6 December 2016. [Google Scholar]
- Sobhani, Z.; Samani, S.M.; Montaseri, H.; Khezri, E. Nanoparticles of Chitosan Loaded Ciprofloxacin: Fabrication and Antimicrobial Activity. Adv. Pharm. Bull. 2017, 7, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Fawaz, F.; Bonini, F.; Maugein, J.; Lagueny, A.M. Ciprofloxacin-loaded polyisobutylcyanoacrylate nanoparticles: Pharmacokinetics and in vitro antimicrobial activity. Int. J. Pharm. 1998, 168, 255–259. [Google Scholar] [CrossRef]
- Page-Clisson, M.E.; Pinto-Alphandary, H.; Ourevitch, M.; Andremont, A.; Couvreur, P. Development of ciprofloxacin-loaded nanoparticles: Physicochemical study of the drug carrier. J. Control. Release 1998, 56, 23–32. [Google Scholar] [CrossRef]
- Jeong, Y.I.; Na, H.S.; Seo, D.H.; Kim, D.G.; Lee, H.C.; Jang, M.K.; Na, S.H.; Roh, S.H.; Kim, S.I.; Nah, J.W. Ciprofloxacin-encapsulated poly(dl-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int. J. Pharm. 2008, 352, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Bakker-Woudenberg, I.A.J.M.; ten Kate, M.T.; Guo, L.; Working, P.; Mouton, J.W. Improved Efficacy of Ciprofloxacin Administered in Polyethylene Glycol-Coated Liposomes for Treatment of Klebsiella pneumoniae Pneumonia in Rats. Antimicrob. Agents Chemother. 2001, 45, 1487–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellbogen, M.H.; Olsen, K.M.; Gentry-Nielsen, M.J.; Preheim, L.C. Efficacy of liposome-encapsulated ciprofloxacin compared with ciprofloxacin and ceftriaxone in a rat model of pneumococcal pneumonia. J. Antimicrob. Chemother. 2003, 51, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Tahaa, E.I.; El-Anazi, M.H.; El-Bagory, I.M.; Bayomi, M.A. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm. J. 2014, 22, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 24th Informational Supplement; CLSI document M100 Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Furneri, P.M.; Mondello, L.; Mandalari, G.; Paolino, D.; Dugo, P.; Garozzo, A.; Bisignano, G. In vitro antimycoplasmal activity of Citrus bergamia essential oil and its major components. Eur. J. Med. Chem. 2012, 52, 66–69. [Google Scholar] [CrossRef] [PubMed]
Component | C1Si | C2Si | C3Si | C4Si |
---|---|---|---|---|
CIP HCl | 0.01 | 0.01 | 0.01 | 0.01 |
S100 | 1 | 1 | 1 | 1 |
TEA | 210 µL | 210 µL | 210 µL | 210 µL |
DDAB | 0 | 0.05 | 0.10 | 0.15 |
TWEEN® 80 | 0.25 | 0.25 | 0.25 | 0.25 |
Component | C5Si | C6Si | C7Si | C8Si |
---|---|---|---|---|
CIP HCl | 0.05 | 0.05 | 0.05 | 0.05 |
S100 | 1 | 1 | 1 | 1 |
TEA | 1 mL | 1 mL | 1 mL | 1 mL |
DDAB | 0 | 0.05 | 0.10 | 0.15 |
TWEEN® 80 | 0.25 | 0.25 | 0.25 | 0.25 |
Blank Sample | S100 | TWEEN® 80 | DDAB |
---|---|---|---|
C0Si | 1 | 0.25 | 0.10 |
Sample | Size (nm) | PdI | ZP (mV) | EE% | Drug Content (μg/mL) | Drug Content (μg/mL) after 9 Months at 4 °C | Drug Content (μg/mL) after 9 Months at 25 °C |
---|---|---|---|---|---|---|---|
C1Si | 353.8 ± 19.24 | 0.337 ± 0.019 | −39.3 ± 1.35 | 91.1 ± 5.11 | 91.09 ± 5.11 | 79.19 ± 6.01 | 67.11 ± 3.99 |
C2Si | 311.7 ± 4.16 | 0.233 ± 0.010 | +18.7 ± 5.53 | 88.7 ± 9.98 | 88.67 ± 9.98 | 67.65 ± 4.44 | 66.43 ± 12.00 |
C3Si | 345.0 ± 11.45 | 0.340 ± 0.052 | +35.1 ± 0.81 | 86.1 ± 1.24 | 86.11 ± 1.24 | 69.33 ± 11.11 | 63.33 ± 9.91 |
C4Si | 315.0 ± 1.51 | 0.323 ± 0.014 | +46.1 ± 0.46 | 82.9 ± 5.55 | 82.90 ± 5.55 | 65.02 ± 4.98 | 56.43 ± 4.46 |
C5Si | 309.0 ± 6.94 | 0.257 ± 0.006 | −41.9 ± 0.46 | 93.0 ± 8.01 | 465.00 ± 37.24 | 411.66 ± 22.12 | 357.10 ± 22.00 |
C6Si | 272.0 ± 6.03 | 0.271 ± 0.081 | +32.8 ± 0.70 | 90.3 ± 3.99 | 451.50 ± 18.01 | 411.02 ± 23.91 | 366.20 ± 23.98 |
C7Si | 285.9 ± 17.91 | 0.232 ± 0.410 | +46.7 ± 0.56 | 87.7 ± 3.49 | 438.52 ± 15.30 | 399.42 ± 33.01 | 334.22 ± 11.98 |
C8Si | 305.2 ± 5.89 | 0.268 ± 0.046 | +50.5 ± 1.71 | 89.0 ± 7.12 | 444.98 ± 31.68 | 395.22 ± 22.58 | 345.11 ± 27.98 |
Blank Sample | Size (nm) | PdI | ZP (mV) |
---|---|---|---|
C0Si | 279.1 ± 1.55 | 0.292 ± 0.030 | +58.8 ± 7.51 |
Strain | CIP | C1Si (No DDAB) | C2Si (DDAB: 0.5 mg/mL) | C3Si (DDAB: 1 mg/mL) | C4Si (DDAB: 1.5 mg/mL) |
---|---|---|---|---|---|
E. coli ATCC 25922 | ≤0.004 | ≤0.004 | 0.02 | 0.01 | 0.01 |
P. aeruginosa ATCC 27853 | 1 | 1 | 0.6 | 0.6 | 0.6 |
S. aureus ATCC 29213 | 0.5 | 0.5 | 0.15 | 0.03 | 0.02 |
E. faecalis ATCC 29212 | 0.5 | 0.5 | 0.3 | 0.06 | 0.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pignatello, R.; Leonardi, A.; Fuochi, V.; Petronio Petronio, G.; Greco, A.S.; Furneri, P.M. A Method for Efficient Loading of Ciprofloxacin Hydrochloride in Cationic Solid Lipid Nanoparticles: Formulation and Microbiological Evaluation. Nanomaterials 2018, 8, 304. https://doi.org/10.3390/nano8050304
Pignatello R, Leonardi A, Fuochi V, Petronio Petronio G, Greco AS, Furneri PM. A Method for Efficient Loading of Ciprofloxacin Hydrochloride in Cationic Solid Lipid Nanoparticles: Formulation and Microbiological Evaluation. Nanomaterials. 2018; 8(5):304. https://doi.org/10.3390/nano8050304
Chicago/Turabian StylePignatello, Rosario, Antonio Leonardi, Virginia Fuochi, Giulio Petronio Petronio, Antonio S. Greco, and Pio Maria Furneri. 2018. "A Method for Efficient Loading of Ciprofloxacin Hydrochloride in Cationic Solid Lipid Nanoparticles: Formulation and Microbiological Evaluation" Nanomaterials 8, no. 5: 304. https://doi.org/10.3390/nano8050304
APA StylePignatello, R., Leonardi, A., Fuochi, V., Petronio Petronio, G., Greco, A. S., & Furneri, P. M. (2018). A Method for Efficient Loading of Ciprofloxacin Hydrochloride in Cationic Solid Lipid Nanoparticles: Formulation and Microbiological Evaluation. Nanomaterials, 8(5), 304. https://doi.org/10.3390/nano8050304