Wetting Behaviors of a Nano-Droplet on a Rough Solid Substrate under Perpendicular Electric Field
Abstract
:1. Introduction
2. Molecular Simulation Model
3. Results and Discussion
3.1. Effect of Roughness on Static Contact Angles
3.2. Static Wetting under Electric Field
3.3. Dynamic Wetting Process under Electric Field
3.4. Distribution of Water Molecular Parameters
3.4.1. Hydrogen Bonds
3.4.2. Water Molecular Dipole Moment
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Knoche, M. Organosilicone surfactant performance in agricultural spray application: A review. Weed Res. 1994, 34, 221–239. [Google Scholar] [CrossRef]
- López, V.H.; Kennedy, A.R. Flux-assisted wetting and spreading of Al on TiC. J. Colloid Interface Sci. 2006, 298, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Perelaer, J.; Hendriks, C.E.; de Laat, A.W.M.; Schubert, U.S. One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 2009, 20, 165303. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Fadeev, A.Y.; Hsieh, M.C.; Öner, D.; Youngblood, J.; McCarthy, T.J. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir 1999, 15, 3395. [Google Scholar] [CrossRef]
- Tuteja, A.; Choi, W.; Ma, M.; Mabry, J.M.; Mazzella, S.A.; Rutledge, G.C.; McKinley, G.H.; Cohen, R.E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Roach, P.; Shirtcliffe, N.J.; Newton, M.I. Progess in superhydrophobic surface development. Soft Matter 2008, 4, 224–240. [Google Scholar] [CrossRef]
- Chien, Y.C.; Weng, H.C. A brief note on the magnetowetting of magnetic nanofluids on AAO surfaces. Nanomaterials 2018, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Yong, X.; Zhang, L. Nanoscale wetting on groove-patterned surfaces. Langmuir 2009, 25, 5045–5053. [Google Scholar] [CrossRef] [PubMed]
- Ambrosia, M.S.; Ha, M.Y.; Balachandar, S. The effect of pillar surface fraction and pillar height on contact angles using molecular dynamics. Appl. Surf. Sci. 2013, 282, 211–216. [Google Scholar] [CrossRef]
- Berim, G.O.; Ruckenstein, E. Nanodrop on a nanorough hydrophilic solid surface: Contact angle dependence on the size, arrangement, and composition of the pillars. J. Colloid Interface Sci. 2011, 359, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Koishi, T.; Yasuoka, K.; Fujikawa, S.; Zeng, X.C. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: A molecular dynamics simulation study. ACS Nano 2011, 5, 6834–6842. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Man, Y.; Balachandar, S. Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation. J. Colloid Interface Sci. 2009, 339, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Hu, H.; Duan, Y.; Sun, Y. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study. Appl. Phys. Lett. 2013, 103, 253104. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, Y.; Shi, X.; Song, S. Rapid evaporation of water on graphene/graphene-oxide: A molecular dynamics study. Nanomaterials 2017, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhang, L.; Li, X.; Li, Y.; Wu, W.; Li, H. Interfacial structure and wetting properties of water droplets on graphene under a static electric field. Phys. Chem. Chem. Phys. 2015, 17, 23460–23467. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, W.; Xie, Y.; Wang, Z.; Qin, J. Wettability behavior of water droplet on organic-polluted fused quartz surfaces of pillar-type nanostructures applying molecular dynamics simulation. Appl. Surf. Sci. 2017, 396, 1058–1066. [Google Scholar] [CrossRef]
- Svoboda, M.; Malijevský, A.; Lísal, M. Wetting properties of molecularly rough surfaces. J. Chem. Phys. 2015, 143, 65. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Tang, G. Static and dynamic behavior of water droplet on solid surfaces with pillar-type nanostructures from molecular dynamics simulation. Int. J. Heat Mass Transf. 2014, 79, 647–654. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Chen, D. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: A molecular dynamics simulation study. J. Chem. Phys. 2015, 17, 30533. [Google Scholar] [CrossRef] [PubMed]
- Mugele, F.; Baret, J.C. Electrowetting: From basics to applications. J. Phys. Condens. Matter 2005, 17, R705–R774. [Google Scholar] [CrossRef]
- Song, F.; Li, B.; Liu, C. Molecular dynamics simulation of nanosized water droplet spreading in an electric field. Langmuir 2013, 29, 4266–4274. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Ma, L.; Fan, J.; Chen, Q.; Lei, G.; Li, B. Electro-wetting of a nanoscale water droplet on a polar solid surface in electric fields. Phys. Chem. Chem. Phys. 2018, 20, 11987–11993. [Google Scholar] [CrossRef] [PubMed]
- Daub, C.D.; Bratko, D.; Leung, K.; Luzar, A. Electrowetting at the nanoscale. J. Phys. Chem. C 2007, 111, 505–509. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, Q. Statics and dynamics of electrowetting on pillar-arrayed surfaces at the nanoscale. Nanoscale 2015, 7, 2561–2567. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y. Wetting and electrowetting on corrugated substrates. Phys. Fluids 2017, 29, 067101. [Google Scholar] [CrossRef]
- Song, F.; Li, B.; Liu, C. Molecular dynamics simulation of the electrically induced spreading of an ionically conducting water droplet. Langmuir 2014, 30, 2394. [Google Scholar] [CrossRef] [PubMed]
- Daub, C.D.; Wang, J.; Kudesia, S.; Bratko, D.; Luzar, A. The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop. Faraday Discuss. 2010, 146, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Werder, T.; Walther, J.H.; Jaffe, R.L.; Halicioglu, T.; Koumoutsakos, P. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 2003, 107, 1345–1352. [Google Scholar] [CrossRef]
- Ritchie, J.A.; Yazdi, J.S.; Bratko, D.; Luzar, A. Metastable sessile nanodroplets on nanopatterned surfaces. J. Phys. Chem. C 2012, 116, 8634–8641. [Google Scholar] [CrossRef]
- Zong, D.; Yang, Z.; Duan, Y. Wettability of a nano-droplet in an electric field: A molecular dynamics study. Appl. Therm. Eng. 2017, 122, 71–79. [Google Scholar] [CrossRef]
- Ostrowski, J.H.; Eaves, J.D. The tunable hydrophobic effect on electrically doped graphene. J. Phys. Chem. B 2014, 118, 530. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.P.; Tildesley, D.J.; Banavar, J.R. Computer Simulation of Liquids; Oxford University Press: New York, NY, USA, 1987; Volume 42, p. 99. ISBN 9780198556459. [Google Scholar]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Hünenberger, P.H. Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci. 2005, 173, 105–149. [Google Scholar] [CrossRef]
- Bertrand, E.; Blake, T.D.; Coninck, J.D. Influence of solid-liquid interactions on dynamic wetting: A molecular dynamics study. J. Phys. Condens. Matter 2009, 21, 464124. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Nakajima, A.; Yoshida, N.; Sakai, M.; Hashimoto, A.; Kameshima, Y.; Okada, K. Freezing of water droplets on silicon surfaces coated with various silanes. Chem. Phys. Lett. 2007, 445, 37–41. [Google Scholar] [CrossRef]
- Luzar, A.; Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 1996, 379, 55–57. [Google Scholar] [CrossRef]
- Suk, M.E.; Aluru, N.R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 2010, 1, 1590–1594. [Google Scholar] [CrossRef]
Atom | σ (nm) | ε (kJ/mole) | q (e) |
---|---|---|---|
O | 0.316 | 0.6502 | −0.8476 |
H | 0 | 0 | 0.4238 |
Si | 0.3615 | 1.26 | 0.0 |
Rough Shape | Flat | Staircase | Fence | Jagged | Ramp | Sine |
---|---|---|---|---|---|---|
Roughness factor (r) | 1.00 | 1.40 | 1.60 | 1.17 | 2.11 | 1.13 |
Number of atoms | 13,206 | 12,030 | 12,030 | 11,993 | 9531 | 11,442 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, F.; Ma, L.; Fan, J.; Chen, Q.; Zhang, L.; Li, B.Q. Wetting Behaviors of a Nano-Droplet on a Rough Solid Substrate under Perpendicular Electric Field. Nanomaterials 2018, 8, 340. https://doi.org/10.3390/nano8050340
Song F, Ma L, Fan J, Chen Q, Zhang L, Li BQ. Wetting Behaviors of a Nano-Droplet on a Rough Solid Substrate under Perpendicular Electric Field. Nanomaterials. 2018; 8(5):340. https://doi.org/10.3390/nano8050340
Chicago/Turabian StyleSong, Fenhong, Long Ma, Jing Fan, Qicheng Chen, Lihui Zhang, and Ben Q. Li. 2018. "Wetting Behaviors of a Nano-Droplet on a Rough Solid Substrate under Perpendicular Electric Field" Nanomaterials 8, no. 5: 340. https://doi.org/10.3390/nano8050340
APA StyleSong, F., Ma, L., Fan, J., Chen, Q., Zhang, L., & Li, B. Q. (2018). Wetting Behaviors of a Nano-Droplet on a Rough Solid Substrate under Perpendicular Electric Field. Nanomaterials, 8(5), 340. https://doi.org/10.3390/nano8050340