Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis
Abstract
:1. Introduction
2. Synthesis of Metal Nanoparticles Using the Thiosulfate Protocol
2.1. Gold Nanoparticles
2.2. Silver Nanoparticles
2.3. Palladium Nanoparticles
2.4. Platinum Nanoparticles
2.5. Iridium Nanoparticles
3. Catalysis of Metal Nanoparticles Generated by the Thiosulfate Protocol
3.1. Catalysis of Palladium Nanoparticles
3.2. Catalysis of Pt Nanoparticles
4. Conclusions and Perspective
Funding
Conflicts of Interest
References
- Feldheim, D.L.; Foss, C.A., Jr. Metal Nanoparticles—Synthesis, Characterization, and Applications, 1st ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 1–15. ISBN 0-8247-0604-8. [Google Scholar]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1169. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of Hybrid Organic-Inorganic Nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar] [CrossRef] [PubMed]
- Dhakshinamoorthy, A.; Garcia, H. Catalysis by Metal Nanoparticles Embedded on Metal-Organic Frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-gold Catalysis in Fine Chemical Synthesis. Chem. Rev. 2012, 112, 2467–2505. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, M.; Garcia, H. Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chem. Rev. 2012, 112, 4469–4506. [Google Scholar] [CrossRef] [PubMed]
- Scholten, J.D.; Leal, B.C.; Dupont, J. Transition Metal Nanoparticle Catalysis in Ionic Liquids. ACS Catal. 2012, 2, 184–200. [Google Scholar] [CrossRef]
- Mikami, Y.; Dhakshinamoorthy, A.; Alvaro, M.; García, H. Catalytic Activity of Unsupported Gold Nanoparticles. Catal. Sci. Technol. 2013, 3, 58–69. [Google Scholar] [CrossRef]
- Namiki, Y.; Fuchigami, T.; Tada, N.; Kawamura, R.; Matsunuma, S.; Kitamoto, Y.; Nakagawa, M. Nanomedicine for Cancer: Lipid-Based Nanostructures for Drug Delivery and Monitoring. Acc. Chem. Res. 2011, 44, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- Rosarin, F.S.; Mirunalini, S. Nobel Metallic Nanoparticles with Novel Biomedical Properties. J. Bioanal. Biomed. 2011, 3, 85–91. [Google Scholar] [CrossRef]
- Kane, J.; Ong, J.; Saraf, R.F. Chemistry, Physics, and Engineering of Electrically Percolating Arrays of Nanoparticles: A Mini Review. J. Mater. Chem. 2011, 21, 16846–16858. [Google Scholar] [CrossRef]
- Karmakar, S.; Kumar, S.; Rinaldi, R.; Maruccio, G. Nano-electronics and Spintronics with Nanoparticles. J. Phys. Conf. Ser. 2011, 292, 012002. [Google Scholar] [CrossRef]
- Sardar, R.; Funston, A.M.; Mulvaney, P.; Murray, R.W. Gold Nanoparticles: Past, Present, and Future. Langmuir 2009, 25, 13840–13851. [Google Scholar] [CrossRef] [PubMed]
- Shon, Y.-S. Metallic Nanoparticles Protected with Monolayers: Synthetic Methods. In Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed.; Lyshevski, S.E., Ed.; Taylor & Francis: New York, NY, USA, 2014; pp. 2396–2407. ISBN 9781439891346. [Google Scholar]
- Simard, J.; Briggs, C.; Boal, A.K.; Rotello, V.M. Formation and pH-controlled Assembly of Amphiphilic Gold Nanoparticles. Chem. Commun. 2000, 1943–1944. [Google Scholar] [CrossRef]
- Cargnello, M.; Wieder, N. L.; Canton, P.; Montini, T.; Giambastiani, G.; Benedetti, A.; Gorte, R. J.; Fornasiero, P. A Versatile Approach to the Synthesis of Functionalized Thiol-Protected Palladium Nanoparticles. Chem. Mater. 2011, 23, 3961–3969. [Google Scholar] [CrossRef]
- Zaluzhna, O.; Li, Y.; Allison, T.C.; Tong, Y.J. Inverse-micelle-encapsulated Water-enabled Bond Breaking of Dialkyl Diselenide/Disulfide: A Critical Step for Synthesizing High-quality Gold Nanoparticles. J. Am. Chem. Soc. 2012, 134, 17991–17996. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Susumu, K.; Goswami, R.; Mattoussi, H. One-phase Synthesis of Water-soluble Gold Nanoparticles with Control Over Size and Surface Functionalities. Langmuir 2010, 26, 7604–7613. [Google Scholar] [CrossRef] [PubMed]
- Volkert, A.A.; Subramaniam, V.; Ivanov, M.R.; Goodman, A.M.; Haes, A.J. Salted-mediated Self-assembly of Thioctic Acid on Gold Nanoparticles. ACS Nano 2011, 5, 4570–4580. [Google Scholar] [CrossRef] [PubMed]
- Shon, Y.-S.; Chuc, S.; Voundi, P. Stability of Tetraoctylammonium Bromide-capped Gold Nanoparticles: Effects of Anion Treatments. Coll. Surf. A 2009, 352, 12–17. [Google Scholar] [CrossRef]
- Calò, V.; Nacci, A.; Monopoli, A.; Cotugno, P. Heck Reactions with Palladium Nanoparticles in Ionic Liquids: Coupling of Aryl Chlorides with Deactivated Olefins. Angew. Chem. Int. Ed. 2009, 48, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ibanñez, F.J.; Zamborini, F.P. Reactivity of Hydrogen with Solid-state Films of Alkylamine- and Tetraoctylammonium Bromide-stabilized Pd, PdAg, and PdAu Nanoparticles for Sensing and Catalysis Applications. J. Am. Chem. Soc. 2008, 130, 622–633. [Google Scholar] [CrossRef]
- Mazumder, V.; Sun, S. Oleylamine-mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.G.; Krylova, G.; Sumer, A.; Schwartz, M.M.; Bunel, E.E.; Marshall, C.L.; Chattopadhyay, S.; Lee, B.; Jellinek, J.; Shevchenko, E.V. Capping Ligands as Selectivity Switchers in Hydrogenation Reactions. Nano Lett. 2012, 12, 5382–5388. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, C.; Tripkovic, D.; Sun, S.; Markovic, N.M.; Stamenkovic, V.R. Surface Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance. ACS Catal. 2012, 2, 1358–1362. [Google Scholar] [CrossRef]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef] [PubMed]
- Wuithschick, M.; Birnbaum, A.; Witte, S.; Sztucki, M.; Vainio, U.; Pinna, N.; Rademann, K.; Emmerling, F.; Kraehnert, R.; Polte, J. Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis. ACS Nano 2015, 9, 7052–7071. [Google Scholar] [CrossRef] [PubMed]
- Piella, J.; Bastùs, N.G.; Puntes, V. Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties. Chem. Mater. 2016, 28, 1066–1075. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 1994, 801–802. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Bakr, O.M.; Amendola, V.; Aikens, C.M.; Wenseleers, W.; Li, R.; Negro, L.D.; Schatz, G.C.; Stellacci, F. Silver Nanoparticles with Broad Multiband Linear Optical Absorption. Angew. Chem. Int. Ed. 2009, 48, 5921–5926. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Zheng, S.; McCourt, M.R.; Bell, S.E.J. Controlling Assembly of Mixed Thiol Monolayers on Silver Nanoparticles to Tune Their Surface Properties. ACS Nano 2012, 6, 3718–3726. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Klabunde, K. J.; Sorensen, C.M. From Monodisperse Sulfurized Palladium Nanoparticles to Tiara Pd(II) Thiolate Clusters: Influence of Thiol Ligand on Thermal Treatment of a Palladium(II)-amine System. J. Phys. Chem. C 2007, 111, 18143–18147. [Google Scholar] [CrossRef]
- Corthey, G.; Rubert, A.A.; Picone, A.L.; Casillas, G.; Giovanetti, L.J.; Ramallo-López, J.M.; Zelaya, E.; Benitez, G.A.; Requejo, F.G.; José-Yacamán, M.; et al. New Insights into the Chemistry of Thiolate-protected Palladium Nanoparticles. J. Phys. Chem. C 2012, 116, 9830–9837. [Google Scholar] [CrossRef]
- Dablemont, C.; Lang, P.; Mangeney, C.; Piquemal, J.-Y.; Petkov, V.; Herbst, F.; Viau, G. FTIR and XPS Study of Pt Nanoparticle Functionalization and Interaction with Alumina. Langmuir 2008, 24, 5832–5841. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, M.J.; Wingate, J.E.; Zhong, C.J.; Harris, J.E.; Vachet, R.W.; Clark, M.R.; Londono, J.D.; Green, S.J.; Stokes, J.J.; Wignall, G.D.; et al. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as Function of Core Size. Langmuir 1998, 14, 17–30. [Google Scholar] [CrossRef]
- Schaaff, T.G.; Shafigullin, M.N.; Khoury, J.T.; Vezmar, I.; Whetten, R.L.; Cullen, W.G.; First, P.N.; GutierrezWing, C.; Ascensio, J.; JoseYacaman, M.J. Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra. J. Phys. Chem. B 1997, 101, 7885–7891. [Google Scholar] [CrossRef]
- Schaaff, T.G.; Knight, G.; Shafigullin, M.N.; Borkman, R.F.; Whetten, R.L. Isolation and Selected Properties of a 10.4 kDa Gold: Glutathione Cluster compound. J. Phys. Chem. B 1998, 102, 10643–10646. [Google Scholar] [CrossRef]
- Goulet, P.J.G.; Lennox, R.B. New Insights into Brust-Schiffrin Metal Nanoparticle Synthesis. J. Am. Chem. Soc. 2010, 132, 9582–9584. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zaluzhna, O.; Xu, B.; Gao, Y.; Modest, J. M.; Tong, Y. J. Mechanistic Insights into the Brust-Schiffrin Two-Phase Synthesis of Organo-chalcogenate-Protected Metal Nanoparticles. J. Am. Chem. Soc. 2011, 133, 2092–2095. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zaluzhna, O.; Tong, Y. J. Critical Role of Water and the Structure of Inverse Micelles in the Brust-Schiffrin Synthesis of Metal Nanoparticles. Langmuir 2011, 27, 7366–7370. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, C.; Guo, C.; Wang, X.; Sun, P.; Zhou, D.; Chen, W.; Xue, G. New Insight into Intermediate Precursors of Brust-Schiffrin Gold Nanoparticles Synthesis. J. Phys. Chem. C 2013, 117, 11399–11404. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, L.; Zhang, R.; Wang, X.; Guo, C.; Sun, P.; Xue, G. Investigation on the Mechanism of the synthesis of Gold(I) Thiolate Complexes by NMR. J. Phys. Chem. C 2014, 118, 10434–10440. [Google Scholar] [CrossRef]
- Porter, L.A., Jr.; Ji, D.; Westcott, S.L.; Graupe, M.; Czernuszewicz, R.S.; Halas, N.J.; Lee, T.R. Gold and Silver Nanoparticles Functionalized by the Adsorption of Dialkyl Disulfides. Langmuir 1998, 14, 7378–7386. [Google Scholar] [CrossRef]
- Hasan, M.; Bethell, D.; Brust, M. The Fate of Sulfur-Bound Hydrogen on Formation of Self-Assembled Thiol Monolayers on Gold: 1H NMR Spectroscopic evidence from Solutions of Gold Clusters. J. Am. Chem. Soc. 2002, 124, 1132–1133. [Google Scholar] [CrossRef] [PubMed]
- Shelley, E.J.; Ryan, D.; Johnson, S.R.; Couillard, M.; Fitzmaurice, D.; Nellist, P.D.; Chen, Y.; Palmer, R.E.; Preece, J.A. Dialkyl sulfides: Novel Passivating Agents for Gold Nanoparticles. Langmuir 2002, 18, 1791–1795. [Google Scholar] [CrossRef]
- Maye, M.M.; Chun, S.C.; Han, L.; Rabinovich, D.; Zhong, C.-J. Novel Spherical Assembly of Gold Nanoparticles Mediated by a Tetradentate Thioether. J. Am. Chem. Soc. 2002, 124, 4958–4959. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wang, Y.; Jiang, L.; Zhu, D. Thiosalicylic Acid-Functionalized Silver Nanoparticles Synthesized in One-Phase System. J. Colloid Interface Sci. 2002, 249, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, S.R.; Cutler, E.C.; Park, J.; Lee, T.R.; Shon, Y. Synthesis of Tetraoctylammonium-protected Gold Nanoparticles with Improved Stability. Langmuir 2005, 21, 5689–5692. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Kissel, L.N.; Jasinkski, J.B.; Zamborini, F.P. Selectivity and Reactivity of Alkylamine- and Alkanethiolate-stabilized Pd and PdAg Nanoparticles for Hydrogenation and Isomerization of Allyl Alcohol. ACS Catal. 2012, 2, 2602–2613. [Google Scholar] [CrossRef]
- Molnáá, Á.; Sárkány, A.; Varga, M. Hydrogenation of Carbon-carbon Multiple Bonds: Chemo-, Regio- and Stero-selectivity. J. Mol. Catal. A Chem. 2001, 173, 185–221. [Google Scholar] [CrossRef]
- Gavia, D.J.; Shon, Y.-S. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands. ChemCatChem 2015, 7, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Shon, Y.-S.; Gross, S.M.; Dawson, B.; Porter, M.; Murray, R.W. Alkanethiolate-Protected gold Clusters Generated from Sodium S-Dodecylthiosulfate (Bunte Salts). Langmuir 2000, 16, 6555–6561. [Google Scholar] [CrossRef]
- Shon, Y.-S.; Wuelfing, W.P.; Murray, R.W. Water-Soluble, Sulfonic Acid-Functionalized, Monolayer-Protected Nanoparticles and an Ionically Conductive Molten Salt Containing Them. Langmuir 2001, 17, 1255–1261. [Google Scholar] [CrossRef]
- Shon, Y.-S.; Cutler, E. Aqueous Synthesis of Alkanethiolate-Protected Ag Nanoparticles Using Bunte Salts. Langmuir 2004, 20, 6626–6630. [Google Scholar] [CrossRef] [PubMed]
- Labukas, J.P.; Drake, T.J.H.; Ferguson, G.S. Compatibility of ω-Functionality in the Electrochemically Directed Self-Assembly of Monolayers on Gold from Alkyl Thiosulfates. Langmuir 2010, 26, 9497–9505. [Google Scholar] [CrossRef] [PubMed]
- Fealy, R.J.; Ackerman, S.R.; Ferguson, G.S. Mechanism of Spontaneous Formation of Monolayers on Gold from Alkyl Thiosulfates. Langmuir 2011, 27, 5371–5376. [Google Scholar] [CrossRef] [PubMed]
- Gavia, D.; Shon, Y.-S. Controlling Surface Ligand Density and Core Size of Alkanethiolate-capped Pd Nanoparticles and Their Effects on Catalysis. Langmuir 2012, 28, 14502–14508. [Google Scholar] [CrossRef] [PubMed]
- Lohse, S.E.; Dahl, J.A.; Hutchison, J.E. Direct Synthesis of Large Water-Soluble Functionalized Gold Nanoparticles Using Bunte Salts as Ligand Precursors. Langmuir 2010, 26, 7504–7511. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.; Imperatori, P.; Marchegiani, G.; Pilloni, L.; Mezzi, A.; Kaciulis, S.; Cannas, C.; Meneghini, C.; Mobilio, S.; Suber, L. High Yield Synthesis of Pure Alkanethiolate-Capped Silver Nanoparticles. Langmuir 2010, 26, 15561–15566. [Google Scholar] [CrossRef] [PubMed]
- Sadeghmoghaddam, E.; Lam, C.; Choi, D.; Shon, Y.-S. Synthesis and Catalytic Property of Alkanethiolate-Protected Pd Nanoparticles Generated from Sodium S-Dodecylthiosulfate. J. Mater. Chem. 2011, 21, 307–312. [Google Scholar] [CrossRef]
- Gavia, D.J.; Maung, M.S.; Shon, Y.-S. Water-soluble Pd Nanoparticles Synthesized from ω-Carboxyl-S-alkanethiosulfate Ligand Precursors as Unimolecular Micelle Catalysts. ACS Appl. Mater. Interfaces 2013, 5, 12432–12440. [Google Scholar] [CrossRef] [PubMed]
- San, K.A.; Chen, V.; Shon, Y.-S. Preparation of Partially Poisoned Alkanethiolate-Capped Platinum nanoparticles for Selective Hydrogenation of Activated Terminal Alkynes. ACS Appl. Mater. Interfaces 2017, 9, 9823–9832. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.G.; Salvatierra, R.V.; Schreiner, W.H.; Oliveira, M.M.; Zarbin, A.J.G. Dodecanethiol-stabilized Platinum Nanoparticles Obtained by a Two-phase Methods: Synthesis, Characterization, Mechanism of Formation, and Electrocatalytic Properties. Chem. Mater. 2010, 22, 360–370. [Google Scholar] [CrossRef]
- Spieker, W.A.; Liu, J.; Miller, J.T.; Kropf, A.J.; Regalbuto, J.R. An EXAFS Study of the Co-ordination Chemistry of Hydrogen Hexachloroplatinate(IV)—1. Speciation in Aqueous Solution. Appl. Catal. A 2002, 232, 219–235. [Google Scholar] [CrossRef]
- Gavia, D.J.; Do, Y.; Gu, J.; Shon, Y.-S. Mechanistic Insights into the Formation of Dodecanethiolate-stabilized Magnetic Iridium Nanoparticles: Thiosulfate vs. Thiol ligands. J. Phys. Chem. C 2014, 118, 14548–14554. [Google Scholar] [CrossRef] [PubMed]
- McKenna, F.-M.; Wells, R.P.K.; Anderson, J.A. Enhanced Selectivity in Acetylene Hydrogenation by Ligand Modified Pd/TiO2 Catalysts. Chem. Commun. 2011, 47, 2351–2353. [Google Scholar] [CrossRef] [PubMed]
- Eklund, S.E.; Cliffel, D.E. Synthesis and Catalytic Properties of Soluble Platinum Nanoparticles Protected by a Thiol Monolayer. Langmuir 2004, 20, 6012–6018. [Google Scholar] [CrossRef]
- Sadeghmoghaddam, E.; Gaieb, K.; Shon, Y.-S. Catalytic Isomerization of Allyl Alcohols to Carbonyl Compounds Using Poisoned Pd Nanoparticles. Appl. Catal. A 2011, 405, 137–141. [Google Scholar] [CrossRef]
- Sadeghmoghaddam, E.; Gu, H.; Shon, Y.-S. Pd Nanoparticle-catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-dependent Regioselectivity. ACS Catal. 2012, 2, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Maung, M.S.; Dinh, T.; Salazar, C.; Shon, Y.-S. Unsupported Micellar Palladium Nanoparticles for Biphasic Hydrogenation and Isomerization of Hydrophobic Allylic Alcohols in Water. Coll. Surf. A 2017, 513, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Gavia, D.J.; Koeppen, J.; Sadeghmoghaddam, E.; Shon, Y.-S. Tandem Semi-Hydrogenation/Isomerization of Propargyl Alcohols to Saturated Carbonyl Analogues by Dodecanethiolate-capped Palladium Nanoparticle Catalysts. RSC Adv. 2013, 3, 13642–13645. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J. S.; Shon, Y.-S. Mechanistic Interpretation of Selective Catalytic Hydrogenation and Isomerization of Alkenes and Dienes by Ligand Deactivated Pd Nanoparticles. Nanoscale 2015, 7, 17786–17790. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-A.; Shon, Y.-S. Alkanethiolate-Capped Palladium Nanoparticle for Selective Catalytic Hydrogenation of Dienes and Trienes. Catal. Sci. Technol. 2017, 7, 4823–4829. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.M.; Shaikhutdinov, S.K.; Freund, H.-J. Surface-Bonded Precursor Determines Particle Size Effects for Alkene Hydrogenation on Palladium. Angew. Chem. Int. Ed. 2005, 44, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.M.; Shaikhutdinov, S.K.; Jackson, S.D.; Freund, H.-J. Hydrogenation on Metal Surfaces: Why are Nanoparticles More Active than Single Crystals? Angew. Chem. Int. Ed. 2003, 42, 5240–5243. [Google Scholar] [CrossRef] [PubMed]
Reaction Conditions 1 | Nanoparticles | |
---|---|---|
MEEE BS/Au | T (°C) | dcore (nm) |
1:100 | 60 | 21.4 ± 2 |
1:20 | 60 | 10.1 ± 3.6 |
1:6 | 24 | 6.1 ± 1.1 |
1:1 | 24 | 3.1 ± 1.1 |
3:1 | 24 | 1.6 ± 0.4 |
Nanoparticles | TEM (Diameter, nm) |
---|---|
AgNP, Bunte | 3.3 ± 0.8 |
AgNP, Bunte, 50 °C | 3.5 ± 1.0 |
AgNP, thiol, Tol/H2O | 3.4 ± 1.1 |
AgNP, Bunte, Tol/H2O | 4.3 ± 1.0 |
Entry | Ligand | TOAB | NaBH4 | T (°C) | TGA (% Pd) | TEM (Diameter, nm) | Approximate Average Molecular Formula | Ligand surf. Coverage (Ligands/Surface Atoms) |
---|---|---|---|---|---|---|---|---|
i | 2 | 10 | 20 | 22 | 68.6 | 2.59 ± 1.15 | ~Pd586L142 | 0.52 |
ii | 2 | 10 | 20 | 60 | 51.0 | 1.51 ± 0.46 | ~Pd116L59 | 0.75 |
iii | 2 | 5 | 20 | 22 | 55.7 | 1.66 ± 0.62 | ~Pd140L59 | 0.61 |
iv | 1 | 10 | 20 | 22 | 77.0 | 2.76 ± 1.15 | ~Pd807L127 | 0.37 |
v | 1 | 10 | 5 | 22 | 80.6 | 3.38 ± 0.95 | ~Pd1289L164 | 0.34 |
Entry | Substrate | Reaction Condition | Major Product (%) | Percentage |
---|---|---|---|---|
1 | C8 PdNP, 24 h | (91%) + (9% 1,2-) | ||
2 | C8 PdNP, 24 h | (93%) + (7% 1,2-) | ||
3 | C8 PdNP, 24 h | (92%) + (8% 1,2-) | ||
4 | C8 PdNP, 24 h | (90%) + (7% 1,2-) | ||
5 | C8 PdNP, 24 h | (90%) + (5% 1,2-) | ||
6 | C8 PdNP, 24 h | (59%) + (41% 1,2-) | ||
7 | C8 PdNP, 24 h | (69%) + (23% 1,2-) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San, K.A.; Shon, Y.-S. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis. Nanomaterials 2018, 8, 346. https://doi.org/10.3390/nano8050346
San KA, Shon Y-S. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis. Nanomaterials. 2018; 8(5):346. https://doi.org/10.3390/nano8050346
Chicago/Turabian StyleSan, Khin Aye, and Young-Seok Shon. 2018. "Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis" Nanomaterials 8, no. 5: 346. https://doi.org/10.3390/nano8050346
APA StyleSan, K. A., & Shon, Y. -S. (2018). Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis. Nanomaterials, 8(5), 346. https://doi.org/10.3390/nano8050346