Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications
Abstract
:1. Introduction
2. ICG-Encapsulated Polymeric Composites
2.1. PLGA
2.2. PEG
2.3. PEI
2.4. Lipids
2.5. PLL
2.6. PCL
3. Biomedical Applications
3.1. Diagnosis
3.2. Cancer Therapy
3.3. Medical Imaging
3.3.1. Angiography
3.3.2. Surgery
3.3.3. Sentinel Lymph Node
3.3.4. Cardiac and Hepatic Vascular Systems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patrizi, A.; Raone, B.; Ravaioli, G.M. Management of atopic dermatitis: Safety and efficacy of phototherapy. Clin. Cosmet. Investig. Dermatol. 2015, 8, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Choi, M.G.; Hasan, T. Application of photodynamic therapy in gastrointestinal disorders: An outdated or re-emerging technique? Korean J. Intern. Med. 2017, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vimala, K.; Shanthi, K.; Sundarraj, S.; Kannan, S. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (fa) modified zinc oxide nanosheet. J. Colloid Interf. Sci. 2017, 488, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, K.; Zhao, J.; Liu, X.; Bu, J.; Yan, X.; Huang, R. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J. Am. Chem. Soc. 2013, 135, 4799–4804. [Google Scholar] [CrossRef] [PubMed]
- Qidwai, A.; Khan, S.; Md, S.; Fazil, M.; Baboota, S.; Narang, J.K.; Ali, J. Nanostructured lipid carrier in photodynamic therapy for the treatment of basal-cell carcinoma. Drug Deliv. 2016, 23, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Saw, W.S.; Ujihara, M.; Chong, W.Y.; Voon, S.H.; Imae, T.; Kiew, L.V.; Lee, H.B.; Sim, K.S.; Chung, L.Y. Size-dependent effect of cystine/citric acid-capped confeito-like gold nanoparticles on cellular uptake and photothermal cancer therapy. Colloids Surf. B 2018, 161, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Han, Y.; Sun, B.; Zhao, Z.; Opoku-Damoah, Y.; Cheng, H.; Zhang, H.; Zhou, J.; Ding, Y. Deep tumor penetrating bioparticulates inspired burst intracelluar drug release for precision chemo-phototherapy. Small 2018, 14, e1703110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, Y.; Li, J.; Peng, Z.H.; Sheinin, Y.; Zhou, J.; Oupicky, D. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano 2017, 11, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Sun, Q.; Wang, J.; Tan, X.; Pang, X.; Liu, L.; Yu, M.; Tan, F.; Li, N. A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on td-controlled and icg-loaded cus@msio2. Nanoscale 2017, 9, 3784–3796. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, F.; Attaran-Kakhki, N.; Sazgarnia, A. The synergistic effect of photodynamic therapy and photothermal therapy in the presence of gold-gold sulfide nanoshells conjugated indocyanine green on hela cells. Photodiagnosis Photodyn. Ther. 2017, 17, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Meimandi, M.; Talebi Ardakani, M.R.; Esmaeil Nejad, A.; Yousefnejad, P.; Saebi, K.; Tayeed, M.H. The effect of photodynamic therapy in the treatment of chronic periodontitis: A review of literature. J. Lasers Med. Sci. 2017, 8, S7–S11. [Google Scholar] [CrossRef] [PubMed]
- Morgado, L.F.; Travolo, A.R.F.; Muehlmann, L.A.; Narcizo, P.S.; Nunes, R.B.; Pereira, P.A.G.; Py-Daniel, K.R.; Jiang, C.S.; Gu, J.; Azevedo, R.B.; et al. Photodynamic therapy treatment of onychomycosis with aluminium-phthalocyanine chloride nanoemulsions: A proof of concept clinical trial. J. Photochem. Photobiol. B 2017, 173, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Talib, A.; Mukeshchand Thakur, M.; Shahnawaz Khan, M.; Bhaisare, M.L.; Gedda, G.; Wu, H.-F. Tellurium platinate nanowires for photothermal therapy of cancer cells. J. Mater. Chem. B 2016, 4, 3713–3720. [Google Scholar] [CrossRef]
- Luo, L.; Bian, Y.; Liu, Y.; Zhang, X.; Wang, M.; Xing, S.; Li, L.; Gao, D. Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect. Small 2016, 12, 4103–4112. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.R.; Kuthati, Y.; Kankala, R.K.; Lee, C.H. Synthesis and characterization of chitosan-coated near-infrared (nir) layered double hydroxide-indocyanine green nanocomposites for potential applications in photodynamic therapy. Int. J. Mol. Sci. 2015, 16, 20943–20968. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.P.; Yang, S.H. Contrast-enhanced photoacoustic imaging using indocyanine green-containing nanoparticles. J. Innov. Opt. Heal. Sci. 2014, 7, 1350029. [Google Scholar] [CrossRef]
- Geddes, C.D.; Parfenov, A.; Roll, D.; Uddin, M.J.; Lakowicz, J.R. Fluorescence spectral properties of indocyanine green on a roughened platinum electrode: Metal-enhanced fluorescence. J. Fluoresc. 2003, 13, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Chang, D.S. Fabrication, characterization, and biological evaluation of anti-her2 indocyanine green-doxorubicin-encapsulated peg-b-plga copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Sci. Rep. 2017, 7, 46688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, N.; Liu, Y.; Ji, B.; Wang, Q.; Wang, M.; Dai, K.; Gao, D. On-demand drug release of icg-liposomal wedelolactone combined photothermal therapy for tumor. Nanomedicine 2016, 12, 2019–2029. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, B.; Lytle, C.Y.; Walker, A.M.; Gupta, S.; Vullev, V.I.; Anvari, B. Effects of nanoencapsulation and pegylation on biodistribution of indocyanine green in healthy mice: Quantitative fluorescence imaging and analysis of organs. Int. J. Nanomed. 2013, 8, 1609–1620. [Google Scholar]
- Villaraza, A.J.; Milenic, D.E.; Brechbiel, M.W. Improved speciation characteristics of pegylated indocyanine green-labeled panitumumab: Revisiting the solution and spectroscopic properties of a near-infrared emitting anti-her1 antibody for optical imaging of cancer. Bioconjug. Chem. 2010, 21, 2305–2312. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Gu, L.; Sun, Y.; Wang, S.; You, C.; Zhang, X.; Zhu, J.; Sun, B. Enhanced legumain-recognition and nir controlled released of cisplatin-indocyanine nanosphere against gastric carcinoma. Eur. J. Pharmacol. 2017, 794, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Da Mata, A.P.; Burk, S.E.; Riemann, C.D.; Rosa, R.H., Jr.; Snyder, M.E.; Petersen, M.R.; Foster, R.E. Indocyanine green-assisted peeling of the retinal internal limiting membrane during vitrectomy surgery for macular hole repair. Ophthalmology 2001, 108, 1187–1192. [Google Scholar] [CrossRef]
- Qi, B.; Crawford, A.J.; Wojtynek, N.E.; Holmes, M.B.; Souchek, J.J.; Almeida-Porada, G.; Ly, Q.P.; Cohen, S.M.; Hollingsworth, M.A.; Mohs, A.M. Indocyanine green loaded hyaluronan-derived nanoparticles for fluorescence-enhanced surgical imaging of pancreatic cancer. Nanomedicine 2018, 14, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, E.S.; Defillo, A.; Nussbaum, L. The use of indocyanine green videoangiography to optimize the dural opening for intracranial parasagittal lesions. Neurosurgery 2012, 70, 61–63, discussion 63-64. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sadoqi, M.; Shao, J. Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of peg and folic acid. Int. J. Pharm. 2012, 436, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Sohn, I.; Park, C. Use of indocyanine green for optical analysis of cortical infarcts in photothrombotic ischemic brains. J. Neurosci. Meth. 2015, 248, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.Y.; Kim, H.R.; Lee, H.M.; Sohn, D.K.; Kim, K.G. Fluorescent property of indocyanine green (icg) rubber ring using led and laser light sources. Biomed. Opt. Express 2016, 7, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Bae, P.K.; Jung, J.; Chung, B.H. Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging. Nano Converg. 2014, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Desmettre, T.; Devoisselle, J.M.; Mordon, S. Fluorescence properties and metabolic features of indocyanine green (icg) as related to angiography. Surv. Ophthalmol. 2000, 45, 15–27. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, M.; Chen, Q.; Guan, G.; Hu, W.; Zhao, X.; Qiao, M.; Hu, H.; Liang, Y.; Zhu, H.; et al. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Int. J. Nanomed. 2015, 10, 4747–4761. [Google Scholar] [CrossRef] [PubMed]
- Topete, A.; Alatorre-Meda, M.; Iglesias, P.; Villar-Alvarez, E.M.; Barbosa, S.; Costoya, J.A.; Taboada, P.; Mosquera, V. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 2014, 8, 2725–2738. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Moore, J.; Laulhe, S.; Nantz, M.; Achilefu, S.; Kang, K.A. Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging. Nanotechnology 2012, 23, 095501. [Google Scholar] [CrossRef] [PubMed]
- Geddes, C.D.; Parfenov, A.; Roll, D.; Gryczynski, I.; Malicka, J.; Lakowicz, J.R. Roughened silver electrodes for use in metal-enhanced fluorescence. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Geddes, C.D.; Parfenov, A.; Roll, D.; Fang, J.; Lakowicz, J.R. Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence. Langmuir 2003, 19, 6236–6241. [Google Scholar] [CrossRef] [PubMed]
- Bjornsson, O.G.; Murphy, R.; Chadwick, V.S.; Bjornsson, S. Physiochemical studies on indocyanine green: Molar lineic absorbance, ph tolerance, activation energy and rate of decay in various solvents. J. Clin. Chem. Clin. Biochem. 1983, 21, 453–458. [Google Scholar] [PubMed]
- Kraft, J.C.; Ho, R.J. Interactions of indocyanine green and lipid in enhancing near-infrared fluorescence properties: The basis for near-infrared imaging in vivo. Biochemistry 2014, 53, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.F.; Zheng, M.B.; Yue, C.X.; Luo, Z.Y.; Gong, P.; Gao, G.H.; Sheng, Z.H.; Zheng, C.F.; Cai, L.T. Improving drug accumulation and photothermal efficacy in tumor depending on size of icg loaded lipid-polymer nanoparticles. Biomaterials 2014, 35, 6037–6046. [Google Scholar] [CrossRef] [PubMed]
- Lajunen, T.; Kontturi, L.S.; Viitala, L.; Manna, M.; Cramariuc, O.; Rog, T.; Bunker, A.; Laaksonen, T.; Viitala, T.; Murtomaki, L.; et al. Indocyanine green-loaded liposomes for light-triggered drug release. Mol. Pharm. 2016, 13, 2095–2107. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, Y.; Wang, Z.; Liu, L.; Sun, C.; Chen, Y.; Wang, C. A cascade-targeting nanocapsule for enhanced photothermal tumor therapy with aid of autophagy inhibition. Adv. Healthc. Mater. 2018, e1800121. [Google Scholar] [CrossRef] [PubMed]
- Cherrick, G.R.; Stein, S.W.; Leevy, C.M.; Davidson, C.S. Indocyanine green: Observations on its physical properties, plasma decay, and hepatic extraction. J. Clin. Investig. 1960, 39, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.X.; Zhang, Y.J.; Li, Z.; Li, C.Y.; Wang, Q.B. A novel photoacoustic nanoprobe of icg@peg-ag2s for atherosclerosis targeting and imaging in vivo. Nanoscale 2016, 8, 12531–12539. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wu, H.; Liu, H.; Deng, Z.; Liu, H.; Duan, W.; Liu, X.; Zheng, H. Molecular imaging-guided photothermal/photodynamic therapy against tumor by irgd-modified indocyanine green nanoparticles. J. Control. Release 2016, 224, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.C.; Huang, W.C.; Lin, Y.W.; Yu, T.W.; Chen, H.H.; Lin, S.C.; Chiang, W.H.; Chiu, H.C. Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy. Theranostics 2016, 6, 302–317. [Google Scholar] [CrossRef] [PubMed]
- He, H.Z.; Zheng, X.H.; Zhang, J.X.; Liu, S.; Hu, X.L.; Xie, Z.G. Photothermally induced accumulation and retention of polymeric nanoparticles in tumors for long-term fluorescence imaging. J. Mater. Chem. B 2017, 5, 2491–2499. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, P.; Luo, Z.; Zheng, M.; Tian, H.; Gong, P.; Gao, G.; Pan, H.; Liu, L.; Ma, A.; et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049–10057. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.F.; Zheng, M.B.; Gong, P.; Jia, D.X.; Zhang, P.F.; Shi, B.H.; Sheng, Z.H.; Ma, Y.F.; Cai, L.T. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 2012, 33, 5603–5609. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Hu, D.; Zheng, M.; Zhao, P.; Liu, H.; Gao, D.; Gong, P.; Gao, G.; Zhang, P.; Ma, Y.; et al. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 2014, 8, 12310–12322. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Lee, H.S.; Jung, J.H.; Kim, H.K.; Park, J.H. Photothermally amplified therapeutic liposomes for effective combination treatment of cancer. ACS Appl. Mater. Interfaces 2018, 10, 6118–6123. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jiang, K.; Shen, Z.; Zheng, G.; Fan, L.; Zhao, R.; Shao, J. A small molecule nanodrug by self-assembly of dual anticancer drugs and photosensitizer for synergistic near-infrared cancer theranostics. ACS Appl. Mater. Interfaces 2017, 9, 43508–43519. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.H.; Wadajkar, A.S.; Patel, N.L.; Kavuri, V.C.; Nguyen, K.T.; Liu, H. Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J. Biomed. Opt. 2012, 17, 046003. [Google Scholar] [CrossRef] [PubMed]
- Ashokan, A.; Gowd, G.S.; Somasundaram, V.H.; Bhupathi, A.; Peethambaran, R.; Unni, A.K.; Palaniswamy, S.; Nair, S.V.; Koyakutty, M. Multifunctional calcium phosphate nano-contrast agent for combined nuclear, magnetic and near-infrared in vivo imaging. Biomaterials 2013, 34, 7143–7157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lu, T.; Tao, J.G.; Wan, G.; Zhao, H.X. Co-delivery of paclitaxel and indocyanine green by pegylated graphene oxide: A potential integrated nanoplatform for tumor theranostics. RSC Adv. 2016, 6, 15460–15468. [Google Scholar] [CrossRef]
- Skrivanova, K.; Skorpikova, J.; Svihalek, J.; Mornstein, V.; Janisch, R. Photochemical properties of a potential photosensitiser indocyanine green in vitro. J. Photochem. Photobiol. B 2006, 85, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liang, H.; Li, M.; Luo, Z.; Zhang, J.; Guo, X.; Cai, K. Tumor acidity activating multifunctional nanoplatform for nir-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018, 157, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cell. Nanomed. B 2016, 44, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Croissant, J.G.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 2018, 7, 1700831. [Google Scholar] [CrossRef] [PubMed]
- Quan, B.; Choi, K.; Kim, Y.H.; Kang, K.W.; Chung, D.S. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging. Talanta 2012, 99, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Huang, P.; Gao, G.; Shen, G.; Fu, S.; Cui, D.; Zhou, C.; Ren, Q. Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray ct and nir fluorescence imaging. Opt. Express 2011, 19, 17030–17039. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, P.; Kou, Y.; Wang, J.; Liu, J.; Li, Y.; Li, J.; Wang, L.; Chen, C. Gadolinium(iii)-chelated silica nanospheres integrating chemotherapy and photothermal therapy for cancer treatment and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2015, 7, 25014–25023. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.C.; Xu, Y.; An, S.B.; Zhang, M.; Hu, Y.H.; Wang, L.; Peng, Q.H. Near-infrared induced phaseshifted icg/fe3o4 loaded plga nanoparticles for photothermal tumor ablation. Sci. Rep. 2017, 7, 5490. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.T.; Noh, Y.W.; Han, J.H.; Cai, Q.Y.; Yoon, K.H.; Chung, B.H. Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells. Small 2008, 4, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef] [PubMed]
- Kuthati, Y.; Kankala, R.K.; Lee, C.-H. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl. Clay Sci. 2015, 112–113, 100–116. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Zeng, G.; You, Y.; Wang, H.; Gong, X.; Zheng, R.; Kim, J.; Kim, C.; Song, L. Indocyanine green loaded reduced graphene oxide for in vivo photoacoustic/fluorescence dual-modality tumor imaging. Nanoscale. Res. Lett. 2016, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Akbari, T.; Pourhajibagher, M.; Hosseini, F.; Chiniforush, N.; Gholibegloo, E.; Khoobi, M.; Shahabi, S.; Bahador, A. The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against enterococcus faecalis. Photodiagnosis Photodyn. Ther. 2017, 20, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zhang, J.; Gao, G.; Sheng, Z.; Cui, H.; Cai, L. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics 2016, 6, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; You, Q.; Wang, J.; Liu, L.; Wang, Y.; Song, Y.; Cheng, Y.; Wang, S.; Tan, F.; Li, N. Theranostic nanoplatform: Triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 1963–1975. [Google Scholar] [CrossRef] [PubMed]
- Tringali, A.; Hassan, C.; Rota, M.; Rossi, M.; Mutignani, M.; Aabakken, L. Covered vs. Uncovered self-expandable metal stents for malignant distal biliary strictures: A systematic review and meta-analysis. Endoscopy 2018. [Google Scholar]
- Guan, T.; Shang, W.; Li, H.; Yang, X.; Fang, C.; Tian, J.; Wang, K. From detection to resection: Photoacoustic tomography and surgery guidance with indocyanine green loaded gold nanorod@liposome core-shell nanoparticles in liver cancer. Bioconjug. Chem. 2017, 28, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, C.S.; Hardy, C.W.; Yu, D.S.; Fernandez, B.; Zhang, H. Indocyanine green loaded liposome nanocarriers for photodynamic therapy using human triple negative breast cancer cells. Photodiagnosis Photodyn. Ther. 2014, 11, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shi, T.; Zhou, L.; Zhou, Y.; Sun, B.; Liu, X. Folate-decorated and nir-activated nanoparticles based on platinum(iv) prodrugs for targeted therapy of ovarian cancer. J. Microencapsul. 2017, 34, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A. Folic acid-indocyanine green-poly(d,l-lactide-coglycolide)-lipid nanoparticles. In Molecular Imaging and Contrast Agent Database (Micad); National Center for Biotechnology Information: Bethesda, MD, USA, 2004. [Google Scholar]
- Feng, M.; Kang, H.; Yang, Z.; Luan, B.; Zhou, R. Potential disruption of protein-protein interactions by graphene oxide. J. Chem. Phys. 2016, 144, 225102. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Oloyede, A.; Gu, Y.T. Adhesive characteristics of low dimensional carbon nanomaterial on actin. Appl. Phys. Lett. 2014, 104, 023702. [Google Scholar] [CrossRef]
- Zhong, W.Y.; Min, L.; Liu, L.Y.; Sun, J.L.; Zhong, Z.T.; Zhao, Y.; Song, H.Y. Autophagy as new emerging cellular effect of nanomaterials. Sci. Bull. 2013, 58, 4031–4038. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, W.; Yang, P.; Huang, C.; Li, F. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1509–1525. [Google Scholar] [CrossRef] [PubMed]
- Kankala, R.K.; Zhang, Y.S.; Wang, S.B.; Lee, C.H.; Chen, A.Z. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv. Healthc. Mater. 2017, 6, 1700433. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Xing, D.; Zhou, F.; Wu, B.; Chen, W.R. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Mol. Pharm. 2011, 8, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhou, F.; Wu, B.; Chen, W.R.; Xing, D. Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Mol. Pharm. 2012, 9, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. First observation of a baryonic b_{s}^{0} decay. Phys Rev Lett 2017, 119, 041802. [Google Scholar] [CrossRef] [PubMed]
- Van Gemert, M.C.; Welch, A.J. Clinical use of laser-tissue interactions. IEEE Eng. Med. Biol. Mag. 1989, 8, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Igari, K.; Toyofuku, T.; Kudo, T.; Inoue, Y.; Uetake, H. The evaluation of contralateral foot circulation after unilateral revascularization procedures using indocyanine green angiography. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Alander, J.T.; Kaartinen, I.; Laakso, A.; Patila, T.; Spillmann, T.; Tuchin, V.V.; Venermo, M.; Valisuo, P. A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 2012, 940585. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S.; Tomokuni, A.; Kobayashi, S.; Asukai, K.; Akita, H.; Takahashi, H.; Yanagimoto, Y.; Takahashi, Y.; Miyoshi, N.; Sugimura, K.; et al. Surgical resection of peritoneal recurrence of hepatocellular carcinoma with endoscopic fluorescence imaging system. Gan To Kagaku Ryoho. 2017, 44, 1665–1667. [Google Scholar] [PubMed]
- Zhang, Y.; Yin, G.; Zhao, H.; Ma, W.; Gao, F.; Zhang, L. Assessing Pharmacokinetics of Indocyanine Green-Loaded Nanoparticle in Tumor with a Dynamic Diffuse Fluorescence Tomography System. Proc. SPIE 2018, 10497. [Google Scholar] [CrossRef]
- Reis, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation i. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Tse, B.W.; Yang, H.; Thorling, C.A.; Liu, Y.; Touraud, M.; Chouane, J.B.; Liu, X.; Roberts, M.S.; et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018, 8, 1227–1242. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.H.; Yu, T.W.; Chen, C.J.; Huang, W.C.; Chiu, H.C.; Chiang, W.H. Indocyanine green-encapsulated hybrid polymeric nanomicelles for photothermal cancer therapy. Langmuir 2015, 31, 6202–6210. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.X.; Hieu, V.Q.; Husum, D.M.U.; Tingskov, S.J.; Vinding, M.S.; Nielsen, T.; Song, P.; Nielsen, N.C.; Norregaard, R.; Kjems, J. Theranostic poly(lactic-co-glycolic acid) nanoparticle for magnetic resonance/infrared fluorescence bimodal imaging and efficient sirna delivery to macrophages and its evaluation in a kidney injury model. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2451–2462. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Li, X.D. Near-infrared fluorescent nanocapsules with reversible response to thermal/ph modulation for optical imaging. Biomacromolecules 2011, 12, 4367–4372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Z.; Cheng, G.G.; Zheng, M.B.; Han, J.Y.; Wang, B.B.; Li, M.X.; Chen, J.; Xiao, T.X.; Zhang, J.; Cai, L.T.; et al. Targeted delivery of doxorubicin by csa-binding nanoparticles for choriocarcinoma treatment. Drug Deliv. 2018, 25, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Manchanda, R.; Lei, T.J.; Nagesetti, A.; Fernandez-Fernandez, A.; McGoron, A.J. Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents—An in vitro study. J. Photochem. Photobiol. B 2014, 136, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.B.; Yue, C.X.; Ma, Y.F.; Gong, P.; Zhao, P.F.; Zheng, C.F.; Sheng, Z.H.; Zhang, P.F.; Wang, Z.H.; Cai, L.T. Single-step assembly of dox/icg loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013, 7, 2056–2067. [Google Scholar] [CrossRef] [PubMed]
- Nomikou, N.; Curtis, K.; McEwan, C.; O’Hagan, B.M.G.; Callan, B.; Callan, J.F.; McHale, A.P. A versatile, stimulus-responsive nanoparticle-based platform for use in both sonodynamic and photodynamic cancer therapy. Acta Biomater. 2017, 49, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Akman, L.; Muftuler, F.Z.B.; Bilgi, A.; Kilcar, A.Y.; Gokulu, S.G.; Medine, E.I.; Terek, M.C. Synthesis of a theranostic agent: Radioiodinated pegylated plga-indocyanine capsules and in vitro determination of their bioaffinity on ovarian, cervical and breast cancer cells. J. Radioanal. Nucl. Chem. 2016, 308, 659–670. [Google Scholar] [CrossRef]
- Su, S.S.; Tian, Y.H.; Li, Y.Y.; Ding, Y.P.; Ji, T.J.; Wu, M.Y.; Wu, Y.; Nie, G.J. “Triple-punch” strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy. ACS Nano 2015, 9, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.W.; Wang, L.; Zhao, Y.L.; Meng, D.H.; Li, D.; Li, H.X.; Zhang, B.X.; Shi, J.J.; Zhang, H.L.; Zhang, Z.Z. Targeted imaging and chemo-phototherapy of brain cancer by a multifunctional drug delivery system. Macromol. Biosci. 2015, 15, 1571–1585. [Google Scholar] [CrossRef] [PubMed]
- Regillo, C.D. The present role of indocyanine green angiography in ophthalmology. Curr. Opin. Ophthalmol. 1999, 10, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, Y.H.; Peng, Q.H.; Zhou, J.W.; Zhou, Q.C.; An, S.B.; Niu, C.C. Indocyanine-green-loaded microbubbles for localization of sentinel lymph node using near-infrared fluorescence/ultrasound imaging: A feasibility study. RSC Adv. 2016, 6, 50513–50520. [Google Scholar] [CrossRef]
- Patel, S.K.; Janjic, J.M. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics 2015, 5, 150–172. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, B.; Gupta, S.; Upadhyayula, S.; Vullev, V.I.; Anvari, B. Effect of polyethylene glycol coatings on uptake of indocyanine green loaded nanocapsules by human spleen macrophages in vitro. J. Biomed. Opt. 2011, 16, 051303. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Sato, K.; Hanaoka, H.; Harada, T.; Nakajima, T.; Kim, I.; Paik, C.H.; Wu, A.M.; Choyke, P.L.; Kobayashi, H. Minibody-indocyanine green based activatable optical imaging probes: The role of short polyethylene glycol linkers. ACS Med. Chem. Lett. 2014, 5, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tong, S.; Bao, G.; Gao, C.; Dai, Z.F. Indocyanine green loaded spio nanoparticles with phospholipid-peg coating for dual-modal imaging and photothermal therapy. Biomaterials 2013, 34, 7706–7714. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Feng, M.; Wang, F.; Wang, H.; Guan, W.X. Targeting effect of pegylated liposomes modified with the arg-gly-asp sequence on gastric cancer. Oncol. Rep. 2015, 34, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zheng, M.; Luo, Z.; Gong, P.; Gao, G.; Sheng, Z.; Zheng, C.; Ma, Y.; Cai, L. Nir-driven smart theranostic nanomedicine for on-demand drug release and synergistic antitumour therapy. Sci. Rep. 2015, 5, 14258. [Google Scholar] [CrossRef] [PubMed]
- Suganami, A.; Toyota, T.; Okazaki, S.; Saito, K.; Miyamoto, K.; Akutsu, Y.; Kawahira, H.; Aoki, A.; Muraki, Y.; Madono, T.; et al. Preparation and characterization of phospholipid-conjugated indocyanine green as a near-infrared probe. Bioorg. Med. Chem. Lett. 2012, 22, 7481–7485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.J.; Zhang, L.Y.; Chen, Y.D.; Li, L.; Su, Z.M.; Wang, C.G. Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. 2017, 8, 8067–8077. [Google Scholar] [CrossRef] [PubMed]
- Mundra, V.; Peng, Y.; Rana, S.; Natarajan, A.; Mahato, R.I. Micellar formulation of indocyanine green for phototherapy of melanoma. J. Control. Release 2015, 220, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Tansey, W.; Ke, S.; Cao, X.Y.; Pasuelo, M.J.; Wallace, S.; Li, C. Synthesis and characterization of branched poly(l-glutamic acid) as a biodegradable drug carrier. J. Control. Release 2004, 94, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Zhang, H.; Guo, X.; Wang, Z.; Kong, F.; Luo, L.; Li, Q.; Zhu, C.; Jie, Y.; Yan, L. Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic–photothermal therapy platform that inhibits tumor growth and metastasis. ACS Appl. Mater. Interfaces 2017, 9, 3354. [Google Scholar]
- Kankala, R.K.; Kuthati, Y.; Liu, C.-L.; Mou, C.-Y.; Lee, C.-H. Killing cancer cells by delivering a nanoreactor for inhibition of catalase and catalytically enhancing intracellular levels of ros. RSC Adv. 2015, 5, 86072–86081. [Google Scholar] [CrossRef]
- Souris, J.S.; Lee, C.-H.; Cheng, S.-H.; Chen, C.-T.; Yang, C.-S.; Ho, J.-A.A.; Mou, C.-Y.; Lo, L.-W. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 2010, 31, 5564–5574. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Peng, H.S.; Yang, W.; Ren, Z.D.; Liu, X.M.; Liu, Y.A. Indocyanine green-platinum porphyrins integrated conjugated polymer hybrid nanoparticles for near-infrared-triggered photothermal and two-photon photodynamic therapy. J. Mater. Chem. B 2017, 5, 1856–1862. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, T.; Yang, C. Development of plga-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery. Int. J. Nanomed. 2016, 11, 5807–5821. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yue, C.X.; Shi, B.H.; Gao, G.H.; Li, M.X.; Wang, B.; Ma, Y.F.; Cai, L.T. Dextran based sensitive theranostic nanoparticles for near-infrared imaging and photothermal therapy in vitro. Chem. Commun. 2013, 49, 6143–6145. [Google Scholar] [CrossRef] [PubMed]
- Daniele, M.A.; Shaughnessy, M.L.; Roeder, R.; Childress, A.; Bandera, Y.P.; Foulger, S. Magnetic nanoclusters exhibiting protein-activated near-infrared fluorescence. ACS Nano 2013, 7, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Mino, K.; Akimoto, H.; Kawabata, M.; Nakamura, K.; Ozaki, M.; Ohmiya, Y. In vivo far-red luminescence imaging of a biomarker based on bret from cypridina bioluminescence to an organic dye. Proc. Natl. Acad. Sci. USA 2009, 106, 15599–15603. [Google Scholar] [CrossRef] [PubMed]
- Barth, B.M.; Sharma, R.; Altinoglu, E.I.; Morgan, T.T.; Shanmugavelandy, S.S.; Kaiser, J.M.; McGovern, C.; Matters, G.L.; Smith, J.P.; Kester, M.; et al. Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. ACS Nano 2010, 4, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Fang, S.; Shi, S.; Deng, J.; Liu, B.; Cai, L. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Biomacromolecules 2013, 14, 3027–3033. [Google Scholar] [CrossRef] [PubMed]
- Schönbächler, A.; Glaied, O.; Huwyler, J.; Frenz, M.; Pieles, U. Indocyanine green loaded biocompatible nanoparticles: Stabilization of indocyanine green (icg) using biocompatible silica-poly(ε-caprolactone) grafted nanocomposites. J. Photoch. Photobio. A 2013, 261, 12–19. [Google Scholar] [CrossRef]
- Byrd, B.D.; Heintzelman, D.L.; Mcnallyheintzelman, K.M. Absorption properties of alternative chromophores for use in laser tissue soldering applications. Biomed. Sci. Instrum. 2003, 39, 6. [Google Scholar] [PubMed]
- Ducray, A.D.; Felser, A.; Zielinski, J.; Bittner, A.; Burgi, J.V.; Nuoffer, J.M.; Frenz, M.; Mevissen, M. Effects of silica nanoparticle exposure on mitochondrial function during neuronal differentiation. J. Nanobiotechnol. 2017, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Choi, J.H.; Son, J.H.; Hwang, S.J.; Seo, H.; Kang, I.-K.; Park, M.; Kim, J.; Hyun, D.C. Poly(ε-caprolactone) (pcl) fibers incorporated with phase-changeable fatty acid and indocyanine green for nir light-triggered, localized anti-cancer drug release. Polymer 2018, 135, 211–218. [Google Scholar] [CrossRef]
- Sun, H.P.; Su, J.H.; Meng, Q.S.; Yin, Q.; Zhang, Z.W.; Yu, H.J.; Zhang, P.C.; Wang, S.L.; Li, Y.P. Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro. Acta Pharmacol. Sin. 2016, 37, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Di Nezza, F.; Guerra, G.; Costagliola, C.; Zeppa, L.; Ambrosone, L. Thermodynamic properties and photodegradation kinetics of indocyanine green in aqueous solution. Dyes Pigments 2016, 134, 342–347. [Google Scholar] [CrossRef]
- Feng, S.S.; Chien, S. Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 2003, 58, 4087–4114. [Google Scholar] [CrossRef]
- Fujiwara, K.; Nagao, S.; Aotani, E.; Hasegawa, K. Principle and evolving role of intraperitoneal chemotherapy in ovarian cancer. Expert Opin. Pharmaco. 2013, 14, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Gooi, Z.; Fakhry, C.; Goldenberg, D.; Richmon, J.; Kiess, A.P.; Education Committee of the American, H.; Neck, S. Ahns series: Do you know your guidelines?Principles of radiation therapy for head and neck cancer: A review of the national comprehensive cancer network guidelines. Head Neck 2016, 38, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Jheng, P.R.; Lu, K.Y.; Yu, S.H.; Mi, F.L. Free dox and chitosan-n-arginine conjugate stabilized indocyanine green nanoparticles for combined chemophotothermal therapy. Colloids Surf. B 2015, 136, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Carr, J.A.; Franke, D.; Caram, J.R.; Perkinson, C.F.; Saif, M.; Askoxylakis, V.; Datta, M.; Fukumura, D.; Jain, R.K.; Bawendi, M.G.; et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. USA 2018, 115, 4465–4470. [Google Scholar] [CrossRef] [PubMed]
- Saxena, V.; Sadoqi, M.; Shao, J. Polymeric nanoparticulate delivery system for indocyanine green: Biodistribution in healthy mice. Int. J. Pharm. 2006, 308, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.; Inagaki, Y.; Ishizawa, T.; Gao, J.J.; Tang, W.; Aoki, T.; Sakamoto, Y.; Hasegawa, K.; Sugawara, Y.; Kokudo, N. Photodynamic therapy for human hepatoma-cell-line tumors utilizing biliary excretion properties of indocyanine green. J. Gastroenterol. 2014, 49, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Josefsen, L.B.; Boyle, R.W. Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs 2008, 2008, 276109. [Google Scholar] [CrossRef] [PubMed]
- Kankala, R.K.; Liu, C.-G.; Chen, A.-Z.; Wang, S.-B.; Xu, P.-Y.; Mende, L.K.; Liu, C.-L.; Lee, C.-H.; Hu, Y.-F. Overcoming multidrug resistance through the synergistic effects of hierarchical ph-sensitive, ros-generating nanoreactors. ACS Biomater. Sci. Eng. 2017, 3, 2431–2442. [Google Scholar] [CrossRef]
- Kankala, R.K.; Tsai, P.-Y.; Kuthati, Y.; Wei, P.-R.; Liu, C.-L.; Lee, C.-H. Overcoming multidrug resistance through co-delivery of ros-generating nano-machinery in cancer therapeutics. J. Mater. Chem. B 2017, 5, 1507–1517. [Google Scholar] [CrossRef]
- Lyu, Y.; Xie, C.; Chechetka, S.A.; Miyako, E.; Pu, K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049–9052. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X.F.; Zhao, Y.; Zhang, H.; et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967. [Google Scholar] [CrossRef] [PubMed]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.R.; Adams, R.L.; Bartels, K.E.; Nordquist, R.E. Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser. Cancer Lett. 1995, 94, 125–131. [Google Scholar] [CrossRef]
- Shafirstein, G.; Baumler, W.; Hennings, L.J.; Siegel, E.R.; Friedman, R.; Moreno, M.A.; Webber, J.; Jackson, C.; Griffin, R.J. Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma. Int. J. Cancer 2012, 130, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Schnell, O.; Morhard, D.; Holtmannspotter, M.; Reiser, M.; Tonn, J.C.; Schichor, C. Near-infrared indocyanine green videoangiography (icgva) and intraoperative computed tomography (ict): Are they complementary or competitive imaging techniques in aneurysm surgery? Acta Neurochir. (Wien) 2012, 154, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.K.; Wu, C.J.; Chen, C.Y.; Wang, C.Y.; Chu, T.S.; Hsu, K.F.; Chiu, H.T.; Liu, H.H.; Chou, C.Y.; Wang, C.H.; et al. Intraoperative indocyanine green fluorescent angiography-assisted modified superior gluteal artery perforator flap for reconstruction of sacral pressure sores. Int. Wound. J. 2017, 14, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Viraka Nellore, B.P.; Pramanik, A.; Chavva, S.R.; Sinha, S.S.; Robinson, C.; Fan, Z.; Kanchanapally, R.; Grennell, J.; Weaver, I.; Hamme, A.T.; et al. Aptamer-conjugated theranostic hybrid graphene oxide with highly selective biosensing and combined therapy capability. Faraday Discuss. 2014, 175, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, A.; Chavva, S.R.; Fan, Z.; Sinha, S.S.; Nellore, B.P.; Ray, P.C. Extremely high two-photon absorbing graphene oxide for imaging of tumor cells in the second biological window. J. Phys. Chem. Lett. 2014, 5, 2150–2154. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, F.; Tian, R.; Zhang, L.; Fu, G.; Yang, L.; Zhu, L. Nanotubes-embedded indocyanine green-hyaluronic acid nanoparticles for photoacoustic-imaging-guided phototherapy. ACS Appl. Mater. Interfaces 2016, 8, 5608–5617. [Google Scholar] [CrossRef] [PubMed]
- De la Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B.R.; Ma, T.J.; Oralkan, O.; et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotech. 2008, 3, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Y.; Hong, K.; Zhu, S.; Wan, J. Photoacoustic and fluorescence imaging of cutaneous squamous cell carcinoma in living subjects using a probe targeting integrin alphavbeta6. Sci. Rep. 2017, 7, 42442. [Google Scholar] [CrossRef] [PubMed]
- Zanganeh, S.; Li, H.; Kumavor, P.D.; Alqasemi, U.; Aguirre, A.; Mohammad, I.; Stanford, C.; Smith, M.B.; Zhu, Q. Photoacoustic imaging enhanced by indocyanine green-conjugated single-wall carbon nanotubes. J. Biomed. Opt. 2013, 18, 096006. [Google Scholar] [CrossRef] [PubMed]
- Lieto, E.; Galizia, G.; Cardella, F.; Mabilia, A.; Basile, N.; Castellano, P.; Orditura, M.; Auricchio, A. Indocyanine green fluorescence imaging-guided surgery in primary and metastatic liver tumors. Surg. Innov. 2018, 25, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Kurihara, S.; Arai, S.; Miyazawa, Y.; Kato, H.; Koike, H.; Ito, K.; Nakamura, T.; Suzuki, K. Efficacy of microsurgical subinguinal varicocelectomy using indocyanine green fluorescence angiography: A pilot study. Nihon Hinyokika Gakkai Zasshi 2015, 106, 293–298. [Google Scholar] [CrossRef]
- Jeong, H.S.; Lee, C.M.; Cheong, S.J.; Kim, E.M.; Hwang, H.; Na, K.S.; Lim, S.T.; Sohn, M.H.; Jeong, H.J. The effect of mannosylation of liposome-encapsulated indocyanine green on imaging of sentinel lymph node. J. Liposome Res. 2013, 23, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.L.; Boushel, R. Assessment of cardiac output with transpulmonary thermodilution during exercise in humans. J. Appl. Physiol. 2015, 118, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Maarek, J.M.I.; Rubinstein, E.H.; Guo, Y.M.; Lane, C.J.; Campese, V.M.; Holschneider, D.P. Measurement of cardiac output and blood volume during hemodialysis with fluorescent dye dilution technique. Ann. Biomed. Eng. 2017, 45, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Martisiene, I.; Macianskiene, R.; Treinys, R.; Navalinskas, A.; Almanaityte, M.; Karciauskas, D.; Kucinskas, A.; Grigaleviciute, R.; Zigmantaite, V.; Benetis, R.; et al. Voltage-sensitive fluorescence of indocyanine green in the heart. Biophys. J. 2016, 110, 723–732. [Google Scholar] [CrossRef] [PubMed]
Nanoconstruct | D/nm | DC | DLC/% | DLE/% | MEW/nm | MAW/nm | Lifetime | t1/2 | Reference |
---|---|---|---|---|---|---|---|---|---|
Free ICG | - | - | - | - | 800 | >750 | 3.8 ± 1.0% retained after 20 min | 3.4±0.7 min | [42] |
PFC-ICG | 119.1 ± 25.1 | 6.25 μM | - | 95.1 ± 2.2 | 825 | 760 | >4 mth | - | [30] |
HCP@PQ-ICG | 81.1 ± 7.9 | 5 μg/mL | 92.3 | 15.6 | 835 | 758 | - | 2.04 h | [41] |
ICG@PEG-Ag2S | 172.2 | 24 nM | - | - | 1100 | 800 | - | 6.88 h | [43] |
iRGD–ICG-LPs | 115.91 ± 0.43 | 20 μg/mL | - | 93.32 ± 1.25 | 784 | 801 | 72% left after 1 mth | - | [44] |
ICG-loaded NHTPNs | 78.1 ± 3.2 | 20 μM | 6.7 ± 0.3 | 70.5 ± 2.4 | 808 | 796 | >7 d | - | [45] |
ICG@PEA112 | 60 | 10 wt.% | 5.95 | 59.5 | 810 | 796 | 45% left after 1 mth | - | [46] |
ICNPs | 200.4 | 40 μg/mL | - | 36.65 ± 0.02 | 815 | 780 | 1440 min | 7–14 times than free ICG | [47] |
FA-ICG-PLGA-lipid NPs | 102.4 ± 4 | 2.5 μg/mL | - | - | 801 | - | 84.1% left after 1 mth | - | [48] |
HSA-ICG NPs | 75 ± 2.4 | 0.2 mg/mL | - | - | 808 | 785 | >7 d | 2.86 h | [49] |
CL16 | 122.77 ± 4.07 | - | 1.6 | - | 820 | 785 | - | 5.8 h | [50] |
ICG@UA/PTX NPs | 130.8 ± 0.20 | 200 μg/mL | - | 96.88 ± 2.6 | 800 | 804 | >20 d | - | [51] |
PIN | 246 ± 11 | 20–75 μg/mL | - | 48.75 ± 5.48 | 810 | 780 | 0.30 ± 0.01 ns | - | [52] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.-H.; Kankala, R.K.; Wang, S.-B.; Chen, A.-Z. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. Nanomaterials 2018, 8, 360. https://doi.org/10.3390/nano8060360
Han Y-H, Kankala RK, Wang S-B, Chen A-Z. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. Nanomaterials. 2018; 8(6):360. https://doi.org/10.3390/nano8060360
Chicago/Turabian StyleHan, Ya-Hui, Ranjith Kumar Kankala, Shi-Bin Wang, and Ai-Zheng Chen. 2018. "Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications" Nanomaterials 8, no. 6: 360. https://doi.org/10.3390/nano8060360
APA StyleHan, Y. -H., Kankala, R. K., Wang, S. -B., & Chen, A. -Z. (2018). Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. Nanomaterials, 8(6), 360. https://doi.org/10.3390/nano8060360