High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.R.; Simon, P. Electrochemical Capacitors for Energy Management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, B.; Sader, J.E.; Boland, J.J. Mechanical Properties of ZnO Nanowires. Phys. Rev. Lett. 2008, 101, 175502. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy 2012, 1, 13–24. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Hinchet, R.; Yang, Y.; Ardila, G.; Sangmuang, R.; Zhang, F.; Zhang, Y.; Han, W.; Pradel, K.; Montès, L.; et al. Nano-Newton Transverse Force Sensor Using a Vertical GaN Nanowire based on the Piezotronic Effect. Adv. Mater. 2013, 25, 883. [Google Scholar] [CrossRef] [PubMed]
- Minary-Jolandan, M.; Bernal, R.A.; Kuljanishvili, I.; Parpoil, V.; Espinosa, H.D. Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D. Nano Lett. 2012, 12, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.H.; Wang, Z.L.; Mao, S.X. Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope. Nano Lett. 2004, 4, 587–590. [Google Scholar] [CrossRef]
- Agrawal, R.; Espinosa, H.D. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 2011, 11, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.F.; Song, J.; Ding, Y.; Lu, S.Y.; Wang, Z.L. Piezoelectric nanogenerator using CdS nanowires. Appl. Phys. Lett. 2008, 92, 022105. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Han, W.; Rai, S.C.; Zhang, Y.; Ding, Y.; Pan, C.; Zhang, F.; Zhou, W.; Wang, Z.L. Vertically Aligned CdSe Nanowire Arrays for Energy Harvesting and Piezotronic Devices. ACS Nano 2012, 6, 6478–6482. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Liu, T.H.; Zhou, Y.; Zhang, Y.; Chueh, Y.L.; Chu, Y.H.; He, H., Jr.; Wang, Z.L. Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays. Nano Energy 2012, 1, 424–428. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Suryavanshi, A.P.; Yum, K.; Yu, M.F. Voltage Generation from Individual BaTiO3 Nanowires under Periodic Tensile Mechanical Load. Nano Lett. 2010, 10, 2966–2969. [Google Scholar]
- Kang, P.G.; Lee, T.K.; Ahn, C.W.; Kim, I.W.; Lee, H.H.; Choi, S.B.; Jung, J.H. Vertically aligned epitaxial KNbO3 nanorod array for piezoelectric energy harvester and second harmonic generator. Nano Energy 2015, 17, 261–268. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 1997, 56, R10024(R). [Google Scholar] [CrossRef]
- Su, W.S.; Chen, Y.F.; Hsiao, C.L.; Tu, L.W. Generation of electricity in GaN nanorods induced by piezoelectric effect. Appl. Phys. Lett. 2007, 90, 063110. [Google Scholar] [CrossRef]
- Gogneau, N.; Chrétien, P.; Galopin, E.; Guilet, S.; Travers, L.; Harmand, J.C.; Houzé, F. GaN nanowires for piezoelectric generators. Phys. Status Solidi RRL 2014, 8, 414–419. [Google Scholar] [CrossRef]
- Huang, C.T.; Song, J.; Tsai, C.H.; Lee, W.F.; Lien, D.H.; Gao, Z.; Hao, Y.; Chen, L.J.; Wang, Z.L. Single-InN-Nanowire Nanogenerator with Upto 1 V Output Voltage. Adv. Mater. 2010, 22, 4008–4013. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Tran, V.H.; Wang, J.; Fuh, Y.K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Serairi, L. Elaboration et Conception des Dispositifs de la Récupération D’énergie à base de Nanofils de ZnO et de Microfibres de PVDF-TrFE. Ph.D. Thesis, Université Paris-Est, Champs-sur-Marne, France, 23 May 2017. [Google Scholar]
- Duan, Y.; Ding, Y.; Bian, J.; Xu, Z.; Yin, Z.; Huang, Y. Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers. Polymers 2017, 9, 714. [Google Scholar] [CrossRef]
- Chen, X.; Xu, S.; Yao, N.; Shi, Y. 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers. Nano Lett. 2010, 10, 2133–2137. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.A.; Yang, R.S.; Wang, S.H.; Wang, Z.L. Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Lett. 2010, 10, 3151–3155. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, A.C.; Liu, Y.; Zhou, Y.; Wang, Z.L. Functional Electrical Stimulation by Nanogenerator with 58 V Output Voltage. Nano Lett. 2012, 12, 3086–3090. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lai, C.H.; Hu, Y.; Zhang, Y.; Wang, X.; Xu, C.; Snyder, R. L.; Chen, L.J.; Wang, Z.L. High output nanogenerator based on assembly of GaN nanowires. Nanotechnology 2011, 22, 475401. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhao, S.; Henderson, R.D.E.; Leonenko, Z.; Abdel-Raman, A.; Mi, Z.; Ban, D. Nanogenerators based on vertically aligned InN nanowires. Nanoscale 2016, 8, 2097–2106. [Google Scholar] [CrossRef] [PubMed]
- Jamond, N.; Chrétien, P.; Houzé, F.; Travers, L.; Harmand, J.C.; Glas, F.; Lefeuvre, E.; Tchernycheva, M.; Gogneau, N. Piezo-generator integrating a vertical array of GaN nanowires. Nanotechnology 2016, 27, 325403. [Google Scholar] [CrossRef] [PubMed]
- Gogneau, N.; Jamond, N.; Chrétien, P.; Houzé, F.; Lefeuvre, E.; Tchernycheva, M. From single III-nitride nanowires to piezoelectric generators: New route for powering nomad electronics. Semicond. Sci. Technol. 2016, 31, 103002. [Google Scholar] [CrossRef]
- Largeau, L.; Galopin, E.; Gogneau, N.; Travers, L.; Glas, F.; Harmand, J.-C. N-Polar GaN Nanowires Seeded by Al Droplets on Si(111). Cryst. Growth Des. 2012, 12, 2724–2729. [Google Scholar] [CrossRef]
- Brubaker, M.D.; Levin, I.; Davydov, A.V.; Rourke, D.M.; Sanford, N.A.; Bright, V.M.; Bertness, K.A. GaN based nanorods for solid state lighting. J. Appl. Phys. 2011, 110, 053506. [Google Scholar] [CrossRef]
- Songmuang, R.; Landré, O.; Daudin, B. Molecular beam epitaxy growth and optical properties of AlN nanowires. Appl. Phys. Lett. 2007, 91, 251902. [Google Scholar] [CrossRef]
- Bertness, K.A.; Roshko, A.; Mansfield, L.M.; Harvey, T.E.; Sanford, N.A. First International Symposium on Growth of Nitrides. J. Cryst. Growth 2007, 300, 1–262. [Google Scholar]
- Morassi, M.; Largeau, L.; Oehler, F.; Song, H.-G.; Travers, L.; Julien, F.H.; Harmand, J.-C.; Cho, Y.-H.; Glas, F.; Tchernycheva, M.; et al. Morphology Tailoring and Growth Mechanism of Indium-Rich InGaN/GaN Axial Nanowire Heterostructures by Plasma-Assisted Molecular Beam Epitaxy. Crystal Growth Des. 2018, 18, 2545–2554. [Google Scholar] [CrossRef]
- Largeau, L.; Dheeraj, D.L.; Tchernycheva, M.; Cirlin, G.E.; Harmand, J.-C. Facet and in-plane crystallographic orientations of GaN nanowires grown on Si(111). Nanotechnology 2008, 19, 155704. [Google Scholar] [CrossRef] [PubMed]
- Gogneau, N.; Chrétien, P.; Galopin, E.; Guilet, S.; Travers, L.; Harmand, J.C.; Houzé, F. Impact of the GaN nanowire polarity on energy harvesting. Appl. Phys. Lett. 2014, 104, 213105. [Google Scholar] [CrossRef]
- Schneegans, O.; Chrétien, P.; Houzé, F. Apparatus for Measuring the Local Electrical Resistance of a Surface. Patents WO-2011138738A1 (2011), EP-2567245A1, 13 March 2013. [Google Scholar]
- Jacopin, G.; De Luna Bugallo, A.; Rigutti, L.; Lavenus, P.; Julien, F.H.; Lin, Y.T.; Tu, L.W.; Tchernycheva, M. Interplay of the photovoltaic and photoconductive operation modes in visible-blind photodetectors based on axial p-i-n junction GaN nanowires. Appl. Phys. Lett. 2014, 104, 023116. [Google Scholar] [CrossRef]
- Jamond, N.; Chrétien, P.; Gatilova, L.; Galopin, E.; Travers, L.; Harmand, J.-C.; Glas, F.; Houzé, F.; Gogneau, N. Energy harvesting efficiency in GaN nanowire-based nanogenerators: the critical influence of the Schottky nanocontact. Nanoscale 2017, 9, 4610–4619. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fei, P.; Song, J.; Wang, X.; Lao, C.; Tummala, R.; Wang, Z.L. Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator. Nano Lett. 2008, 8, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.S.; Song, J.H.; Lu, Y.F.; Wang, Z.L. Identifying individual n-and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator. Nanotechnology 2009, 20, 365703. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Potié, A.; Songmuang, R.; Lee, J.W.; Bercu, B.; Baron, T.; Salem, B.L.; Montès, L. An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: Application to GaN nanowires. Nanotechnology 2011, 22, 105704. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Z.L. Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics. Nano Lett. 2007, 7, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Perea-Garcia, B.; Zuniga-Perez, J.; Munoz-Sanjose, V.; Colchero, J.; Palacios-Lidon, E. Formation and Rupture of Schottky Nanocontacts on ZnO Nanocolumns. Nano Lett. 2007, 7, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Donald, J.L. Engineering Analysis of Smart Material Systems; Wiley-Interscience: New York, NY, USA, 2007; p. 124. [Google Scholar]
- Lu, M.P.; Song, J.; Lu, M.Y.; Chen, M.T.; Gao, Y.; Chen, L.J.; Wang, Z.L. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays. Nano Lett. 2009, 9, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Akeuchi, T.T.; Mano, H.A.; Kasaki, I.A. Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells. Jpn. J. Appl. Phys. 2000, 39, 413. [Google Scholar] [CrossRef]
- Smit, G.D.J.; Rogge, S.; Klapwijk, T.M. Scaling of nano-Schottky-diodes. Appl. Phys. Lett. 2002, 81, 3852. [Google Scholar] [CrossRef]
- Smit, G.D.J.; Rogge, S.; Klapwijk, T.M. Enhanced tunneling across nanometer-scale metal-semiconductor interfaces. Appl. Phys. Lett. 2002, 80, 2568. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- NSM Archive—Physical Properties of Semiconductors. Available online: http://www.ioffe.ru/SVA/NSM/Semicond/ (accessed on 24 May 2018).
- Bernal, R.A.; Agrawal, R.; Peng, B.; Bertness, K.A.; Sanford, N.A.; Davydov, A.V.; Espinosa, H.D. Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined in Situ TEM and Atomistic Modeling Investigation. Nano Lett. 2011, 11, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-S.; Hsieh, C.-H.; Gwo, S.; Hou, M.T.; Yao, J.-S.; Yeh, J.A. An investigation of the Young’s modulus of single-crystalline wurtzite indium nitride using an atomic force microscopy based micromechanical bending test. Appl. Phys. Lett. 2012, 101, 221906. [Google Scholar] [CrossRef]
- Koc, H.; Deligöz, E.; Mamedov, A.M. The elastic, electronic, and optical properties of PtSi and PtGe compounds. Philos. Mag. A 2011, 91, 3093–3107. [Google Scholar] [CrossRef]
- Glas, F.; Daudin, B. Stress-driven island growth on top of nanowires. Phys. Rev. B 2012, 86, 174112. [Google Scholar] [CrossRef]
- Gil, B. Low-Dimensional Nitride Semiconductors; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Simpkins, B.S.; Mastro, M.A.; Eddy, C.R., Jr.; Pehrsson, P.E. Surface depletion effects in semiconducting nanowires. J. Appl. Phys. 2008, 103, 104313. [Google Scholar] [CrossRef]
- Tchoulfian, P.; Donatini, F.; Levy, F.; Dussaigne, A.; Ferret, P.; Pernot, J. Direct Imaging of p–n Junction in Core–Shell GaN Wires. Nano Lett. 2014, 14, 3491–3498. [Google Scholar] [CrossRef] [PubMed]
- Calarco, R.; Stoica, T.; Brandt, O.; Geelhaar, L. Surface-induced effects in GaN nanowires. J. Mater. Res. 2011, 26, 2157–2168. [Google Scholar] [CrossRef]
Constant Normal Force (nN) | Average Output Voltage/Standard Deviation (mV) Double Distribution of the Output Voltages | Maximum Output Voltage (mV) | ||||
---|---|---|---|---|---|---|
35 nm-InGaN | 70 nm-InGaN | Capped 70 nm-InGaN | 35 nm-InGaN | 70 nm-InGaN | Capped 70 nm-InGaN | |
30 | 48 ± 29 158 ± 93 | 46 ± 15 199 ± 33 | 79 ± 60 208 ± 87 | 340 | 411 | 446 |
60 | 66 ± 58 198 ± 95 | 86 ± 80 246 ± 45 | 96 ± 78 257 ± 82 | 357 | 452 | 470 |
100 | 49 ± 53 232 ± 102 | 94 ± 25 263 ± 86 | 152 ± 72 310 ± 109 | 385 | 453 | 472 |
150 | 75 ± 62 239 ± 92 | 93 ± 25 273 ± 90 | 175 ± 71 330 ± 96 | 406 | 454 | 470 |
200 | 84 ± 60 253 ± 64 | 94 ± 43 296 ± 61 | 182 ± 61 333 ± 70 | 423 | 444 | 472 |
GaN | InGaN | InN | PtSi | |
---|---|---|---|---|
Young’s modulus E (GPa) | 300 * [51] | 244 | 149 * [52] | 238 [53] |
Poisson coefficient ν | 0.4 [54] | 0.25 | 0.365 [55] | 0.32 [53] |
Constant Normal Force (nN) | Maximum Output Voltage (mV) | Maximum Output Power (pW per NW) | Maximum Power Density (W/cm²) | ||||||
---|---|---|---|---|---|---|---|---|---|
35 nm-InGaN | 70 nm-InGaN | Capped 70 nm-InGaN | 35 nm-InGaN | 70 nm-InGaN | Capped 70 nm-InGaN | 35 nm-InGaN | 70 nm-InGaN | Capped 70 nm-InGaN | |
200 | 423 | 444 | 472 | 179 | 197 | 223 | 2.7 | 3 | 3.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jegenyes, N.; Morassi, M.; Chrétien, P.; Travers, L.; Lu, L.; Julien, F.H.; Tchernycheva, M.; Houzé, F.; Gogneau, N. High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires. Nanomaterials 2018, 8, 367. https://doi.org/10.3390/nano8060367
Jegenyes N, Morassi M, Chrétien P, Travers L, Lu L, Julien FH, Tchernycheva M, Houzé F, Gogneau N. High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires. Nanomaterials. 2018; 8(6):367. https://doi.org/10.3390/nano8060367
Chicago/Turabian StyleJegenyes, Nikoletta, Martina Morassi, Pascal Chrétien, Laurent Travers, Lu Lu, Francois H. Julien, Maria Tchernycheva, Frédéric Houzé, and Noelle Gogneau. 2018. "High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires" Nanomaterials 8, no. 6: 367. https://doi.org/10.3390/nano8060367
APA StyleJegenyes, N., Morassi, M., Chrétien, P., Travers, L., Lu, L., Julien, F. H., Tchernycheva, M., Houzé, F., & Gogneau, N. (2018). High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires. Nanomaterials, 8(6), 367. https://doi.org/10.3390/nano8060367