Facile and Robust Solvothermal Synthesis of Nanocrystalline CuInS2 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CuInS2 Films
2.2. Characterization
3. Results
3.1. Reaction Time
3.2. Reaction Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yamada, Y.; Yamada, T.; Kanemitsu, Y. Free Carrier Radiative Recombination and Photon Recycling in Lead Halide Perovskite Solar Cell Materials. Bull. Chem. Soc. Jpn. 2017, 90, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Abe, H.; Liu, J.; Ariga, K. Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater. Today 2016, 19, 12–18. [Google Scholar] [CrossRef]
- Teimouri, M.; Khosravi-Nejad, F.; Attar, F.; Saboury, A.A.; Kostova, I.; Benelli, G.; Falahati, M. Gold nanoparticles fabrication by plant extracts: Synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity—A review. J. Clean. Prod. 2018, 184, 740–753. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; He, J.; Zhu, H.; Zhou, X.; Li, M.; Yang, Q.; Xu, F. Enhanced photoelectrochemical properties of α-Fe2O3 nanoarrays for water splitting. J. Alloys Compd. 2018, 753, 601–606. [Google Scholar] [CrossRef]
- Shahriary, M.; Veisi, H.; Hekmati, M.; Hemmati, S. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater. Sci. Eng. C 2018, 90, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Feurer, T.; Bissig, B.; Weiss, T.P.; Carron, R.; Avancini, E.; Löckinger, J.; Buecheler, S.; Tiwari, A.N. Single-graded CIGS with narrow bandgap for tandem solar cells. Sci. Technol. Adv. Mater. 2018, 19, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Fox, M.A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Acc. Chem. Res. 1995, 28, 141–145. [Google Scholar] [CrossRef]
- Gunawan; Haris, A.; Widiyandari, H.; Septina, W.; Ikeda, S. Surface modifications of chalcopyrite CuInS2 thin films for photochatodes in photoelectrochemical water splitting under sunlight irradiation. IOP Conf. Ser. Mater. Sci. Eng. 2017, 172, 012021. [Google Scholar]
- Yang, S.-W.; Pan, G.-T.; Yang, T.C.K.; Chen, C.-C.; Chiang, H.-C. The Photosynthesis of Methanol on 1D Ordered Zn:CuInS2 Nanoarrays. J. Taiwan Inst. Chem. Eng. 2014, 45, 1509–1515. [Google Scholar] [CrossRef]
- Benelli, G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—A brief review. Enzym. Microb. Technol. 2016, 95, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G. Plant-borne compounds and nanoparticles: Challenges for medicine, parasitology and entomology. Environ. Sci. Pollut. Res. 2018, 25, 10149–10150. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Wei, F.; He, C.; Wu, D.; Tang, N.; Qiao, Q. L-cysteine assisted Synthesis of 3D In2S3 for 3D CuInS2 and its Application in Hybrid Solar Cells. RSC Adv. 2017, 7, 37578–37587. [Google Scholar] [CrossRef]
- Yue, W.; Wei, F.; Li, Y.; Zhang, L.; Zhang, Q.; Qiao, Q.; Qiao, H. Hierarchical CuInS2 synthesized with the induction of histidine for polymer/CuInS2 solar cells. Mater. Sci. Semicond. Process. 2018, 76, 14–24. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, X.; Chen, Z. The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI). Sci. Total Environ. 2018, 627, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 2018, 8, 3943. [Google Scholar] [CrossRef] [PubMed]
- Fathalipour, S.; Pourbeyram, S.; Sharafian, A.; Tanomand, A.; Azam, P. Biomolecule-assisted synthesis of Ag/reduced graphene oxide nanocomposite with excellent electrocatalytic and antibacterial performance. Mater. Sci. Eng. C 2017, 75, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Kazmerski, L.L.; Sanborn, G.A. CuInS2 Thin-Film Homojunction Solar Cells. J. Appl. Phys. 1977, 48, 3178–3180. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, Y.; Song, Y.; Wu, C.; Zhang, M.; Xie, Y. Nearly Monodisperse CuInS2 Hierarchical Microarchitectures for Photocatalytic H2 Evolution under Visible Light. Inorg. Chem. 2009, 48, 4003–4009. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Hao, C. Solar-Driven Photoelectrochemical Reduction of Carbon Dioxide to Methanol at CuInS2 Thin Film Photocathode. Sol. Energy Mater. Sol. Cells 2013, 108, 170–174. [Google Scholar] [CrossRef]
- Tell, B.; Shay, J.L.; Kasper, H.M. Electrical Properties, Optical Properties, and Band Structure of CuGaS2 and CuInS2. Phys. Rev. B 1971, 4, 2463–2471. [Google Scholar] [CrossRef]
- Hollingsworth, J.A.; Banger, K.K.; Jin, M.H.C.; Harris, J.D.; Cowen, J.E.; Bohannan, E.W.; Switzer, J.A.; Buhro, W.E.; Hepp, A.F. Single Source Precursors for Fabrication of I–III–VI2 Thin-Film Solar Cells Via Spray CVD. Thin Solid Films 2003, 431–432, 63–67. [Google Scholar] [CrossRef]
- Kuranouchi, S.I.; Nakazawa, T. Study of One-Step Electrodeposition Condition For Preparation of Culn(Se,S)2 Thin Films. Sol. Energy Mater. Sol. Cells 1998, 50, 31–36. [Google Scholar] [CrossRef]
- Liu, H.; Gu, C.; Xiong, W.; Zhang, M. A Sensitive Hydrogen Peroxide Biosensor Using Ultra-Small CuInS2 Nanocrystals as Peroxidase Mimics. Sens. Actuators B Chem. 2015, 209, 670–676. [Google Scholar] [CrossRef]
- Amerioun, M.H.; Ghazi, M.E.; Izadifard, M.; Bahramian, B. Preparation and Characterization of CuInS2 Absorber Layers by Sol-Gel Method for Solar Cell Applications. Eur. Phys. J. Plus 2016, 131, 113. [Google Scholar] [CrossRef]
- Gorai, S.; Bhattacharya, S.; Liarokapis, E.; Lampakis, D.; Chaudhuri, S. Morphology Controlled Solvothermal Synthesis of Copper Indium Sulphide Powder and Its Characterization. Mater. Lett. 2005, 59, 3535–3538. [Google Scholar] [CrossRef]
- Yu, C.; Yu, J.C.; Wen, H.; Zhang, C. A Mild Solvothermal Route for Preparation of Cubic-Like CuInS2 Crystals. Mater. Lett. 2009, 63, 1984–1986. [Google Scholar] [CrossRef]
- Peng, S.; Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Facile Solution-Controlled Growth of CuInS2 Thin Films on FTO and TiO2/FTO Glass Substrates for Photovoltaic Application. J. Alloys Compd. 2009, 481, 786–791. [Google Scholar] [CrossRef]
- Wochnik, A.; Heinzl, C.; Auras, F.; Bein, T.; Scheu, C. Synthesis and Characterization of CuInS2 Thin Film Structures. J. Mater. Sci. 2012, 47, 1669–1676. [Google Scholar] [CrossRef]
- Wochnik, A.S.; Frank, A.; Heinzl, C.; Häusler, J.; Schneider, J.; Hoffmann, R.; Matich, S.; Scheu, C. Insight into the Core–Shell Structures of Cu-In-S Microspheres. Solid State Sci. 2013, 26, 23–30. [Google Scholar] [CrossRef]
- Kuroda, K.; Terao, K.; Akao, M. Inhibitory Effect of Fumaric Acid on Hepatocarcinogenesis By Thioacetamide in Rats. J. Natl. Cancer Inst. 1987, 79, 1047–1051. [Google Scholar] [PubMed]
- Frank, A.; Wochnik, A.S.; Bein, T.; Scheu, C. A Biomolecule-Assisted, Cost-Efficient Route for Growing Tunable CuInS2 films for Green Energy Application. RSC Adv. 2017, 7, 20219–20230. [Google Scholar] [CrossRef]
- Xia, J.; Liu, Y.; Qiu, X.; Mao, Y.; He, J.; Chen, L. Solvothermal Synthesis of Nanostructured CuInS2 Thin Films on FTO Substrates and Their Photoelectrochemical Properties. Mater. Chem. Phys. 2012, 136, 823–830. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Cui, H.; Zhao, W.; Yang, C.; Wang, Y.; Huang, F.; Dai, N. Preparation of Monodispersed CuInS2 Nanopompons and Nanoflake Films and Application in Dye-Sensitized Solar Sells. Phys. Chem. Chem. Phys. 2013, 15, 4496–4499. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-T.; Zhong, J.-S.; Liu, B.-F.; Liang, X.-J.; Yang, X.-Y.; Jin, H.-D.; Yang, F.; Xiang, W.-D. L-cystine-Assisted Growth and Mechanism of CuInS2 Nanocrystallines via Solvothermal Process. Chin. Phys. Lett. 2011, 28, 057702. [Google Scholar] [CrossRef]
- Wen, C.; Weidong, X.; Juanjuan, W.; Xiaoming, W.; Jiasong, Z.; Lijun, L. Biomolecule-Assisted Synthesis of Copper Indium Sulfide Microspheres with Nanosheets. Mater. Lett. 2009, 63, 2495–2498. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse 1918, 26, 98–100. [Google Scholar]
- Frank, A.; Changizi, R.; Scheu, C. Challenges in TEM sample preparation of solvothermally grown CuInS2 films. Micron 2018, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tauc, J.; Menth, A. States in The Gap. J. Non-Cryst. Solids 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Ho, C.H.; Pan, C.C.; Cai, J.R.; Huang, G.T.; Dumcenco, D.O.; Huang, Y.S.; Tiong, K.K.; Wu, C.C. Structural and Band-Edge Properties of Cu(AlxIn1-x)S2 (0 ≤ x ≤1) Series Chalcopyrite Semiconductors. Solid State Phenom. 2013, 194, 133–138. [Google Scholar] [CrossRef]
- Fjellvag, H.; Gronvold, F.; Stolen, S.; Andresen, A.F.; Mueller Kaefer, R.; Simon, A. Low-Temperature Structural Distortion in CuS. Z. Kristallogr. 1988, 184, 111–121. [Google Scholar] [CrossRef]
- Lukashev, P.; Lambrecht, W.R.L.; Kotani, T.; van Schilfgaarde, M. Electronic and Crystal Structure of Cu2S: Full-Potential Electronic Structure Calculations. Phys. Rev. B 2007, 76, 195202. [Google Scholar] [CrossRef]
- Janosi, A. La Structure du Sulfure Cuivreux Quadratique. Acta Crystallogr. 1964, 17, 311–312. [Google Scholar] [CrossRef]
- Hull, S.; Keen, D.A. High-Pressure Polymorphism of The Copper(I) halides: A Neutron-Diffraction Study to ~10 GPa. Phys. Rev. B 1994, 50, 5868–5885. [Google Scholar] [CrossRef]
- Schwarz, U.; Hillebrecht, H.; Syassen, K. Effect of Hydrostatic Pressure on The Crystal Structure of InS. Z. Kristallogr. 1995, 210, 494–497. [Google Scholar] [CrossRef]
- Benchikhi, M.; El Ouatib, R.; Er-Rakho, L.; Durand, B. Synthesis and Characterization of CuInS2 Nanocrystals Prepared by Solvothermal/Molten Salt Method. Ceram. Int. 2016, 42, 11303–11308. [Google Scholar] [CrossRef]
- Das, K.; Panda, S.K.; Gorai, S.; Mishra, P.; Chaudhuri, S. Effect of Cu/In Molar Ratio on The Microstructural and Optical Properties of Microcrystalline CuInS2 Prepared by Solvothermal Route. Mater. Res. Bull. 2008, 43, 2742–2750. [Google Scholar] [CrossRef]
- Werner, J.H.; Mattheis, J.; Rau, U. Efficiency Limitations of Polycrystalline Thin Film Solar Cells: Case of Cu(In,Ga)Se2. Thin Solid Films 2005, 480–481, 399–409. [Google Scholar] [CrossRef]
- Siebentritt, S. What Limits the Efficiency of Chalcopyrite Solar Cells? Sol. Energy Mater. Solar Cells 2011, 95, 1471–1476. [Google Scholar] [CrossRef]
- McCarthy, G.J.; Welton, J.M. X-Ray Diffraction Data for SnO2. An Illustration of The New Powder Data Evaluation Methods. Powder Diffr. 1989, 4, 156–159. [Google Scholar] [CrossRef]
- Li, B.; Xie, Y.; Xue, Y. Controllable Synthesis of CuS Nanostructures from Self-Assembled Precursors With Biomolecule Assistance. J. Phys. Chem. C 2007, 111, 12181–12187. [Google Scholar] [CrossRef]
- Kharkwal, A.; Sharma, S.N.; Jain, K.; Singh, A.K. A Solvothermal Approach for the Size-, Shape- and Phase-Controlled Synthesis and Properties of CuInS2. Mater. Chem. Phys. 2014, 144, 252–262. [Google Scholar] [CrossRef]
- Cavallini, D.; De Marco, C.; Duprè, S.; Rotilio, G. The Copper Catalyzed Oxidation of Cysteine to Cystine. Arch. Biochem. Biophys. 1969, 130, 354–361. [Google Scholar] [CrossRef]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2007. [Google Scholar]
- Saunders, B.R. Hybrid Polymer/Nanoparticle Solar Cells: Preparation, Principles and Challenges. J. Colloid Interface Sci. 2012, 369, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hollemann; Wiberg, E.; Wiberg, N. Lehrbuch der Anorganischen Chemie; Walter de Gruyter: Berlin, Germany, 2007; Volume 102. [Google Scholar]
- Dokken, K.M.; Parsons, J.G.; McClure, J.; Gardea-Torresdey, J.L. Synthesis and Structural Analysis of Copper(II) Cysteine Complexes. Inorg. Chim. Acta 2009, 362, 395–401. [Google Scholar] [CrossRef]
- Zhuang, M.X.; Wei, A.X.; Zhao, Y.; Liu, J.; Yan, Z.Q.; Liu, Z. Morphology-Controlled Growth of Special Nanostructure CuInS2 Thin Films on an FTO Substrate and Their Application in Thin Film Solar Cells. Int. J. Hydrog. Energy 2015, 40, 806–814. [Google Scholar] [CrossRef]
Crystal Size XRD (nm) | EDX SEM Cu:S (Normalized) | EDX TEM Cu:In:S (Normalized) | Band Gap UV-vis (eV) | |
---|---|---|---|---|
film_3 h | 39 ± 4 | --- | Cu:Cl 1.0:0.8 Cu:In:S 1.0:0.1:0.2 | 1.55 |
film_6 h | 6.6 ± 1.4 | 1.0:1.3 | --- | 1.54 |
film_9 h | 11.0 ± 0.6 | 1.0:1.6 | --- | 1.46 |
film_12 h | 7.9 ± 1.0 | 1.0:2.1 | --- | 1.54 |
film_15 h | 8.5 ± 0.6 | 1.0:2.4 | --- | 1.50 |
film_S [32] | 9.4 ± 1.0 | 1.0:2.5 | 1.0:1.0:2.1 | 1.47 |
film_21 h | 8.9 ± 1.0 | 1.0:2.3 | --- | 1.51 |
film_24 h | 11.0 ± 0.5 | 1.0:1.7 | --- | 1.53 |
film_48 h | 8.7 ± 1.0 | 1.0:1.9 | 1.0:1.0:2.2 | 1.44 |
Ø | 9.0 ± 1.0 | 1.0:2.0 ± 0.4 | --- | 1.50 ± 0.04 |
Crystal Size XRD (nm) | EDX SEM Cu:S (Normalized) | EDX TEM Cu:In:S (Normalized) | Band Gap UV-Vis (eV) | |
---|---|---|---|---|
film_120 °C | --- | 1.0:3.9 | --- | 1.51 |
film_140 °C | 7.9 ± 0.5 | 1.0:1.9 | 1.0:1.1:2.2 | 1.52 |
film_S [32] | 9.4 ± 0.6 | 1.0:2.5 | 1.0:1.0:2.1 | 1.47 |
film_160 °C | 9.2 ± 1.0 | 1.0:1.7 | --- | 1.54 |
film_180 °C | 11.4 ± 1.0 | 1.0:1.6 | --- | 1.55 |
film_190 °C | 9.8 ± 0.6 | 1.0:1.4 | 1.0:1.0:1.9 | 1.54 |
Ø | 9.5 ± 1.1 | 1.0:1.8 ± 0.4 | --- | 1.52 ± 0.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, A.; Grunwald, J.; Breitbach, B.; Scheu, C. Facile and Robust Solvothermal Synthesis of Nanocrystalline CuInS2 Thin Films. Nanomaterials 2018, 8, 405. https://doi.org/10.3390/nano8060405
Frank A, Grunwald J, Breitbach B, Scheu C. Facile and Robust Solvothermal Synthesis of Nanocrystalline CuInS2 Thin Films. Nanomaterials. 2018; 8(6):405. https://doi.org/10.3390/nano8060405
Chicago/Turabian StyleFrank, Anna, Jan Grunwald, Benjamin Breitbach, and Christina Scheu. 2018. "Facile and Robust Solvothermal Synthesis of Nanocrystalline CuInS2 Thin Films" Nanomaterials 8, no. 6: 405. https://doi.org/10.3390/nano8060405
APA StyleFrank, A., Grunwald, J., Breitbach, B., & Scheu, C. (2018). Facile and Robust Solvothermal Synthesis of Nanocrystalline CuInS2 Thin Films. Nanomaterials, 8(6), 405. https://doi.org/10.3390/nano8060405