Subwavelength Nanostructuring of Gold Films by Apertureless Scanning Probe Lithography Assisted by a Femtosecond Fiber Laser Oscillator
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Near-Field Enhancement Simulations
3.2. Scanning Probe Near-Field Nanolithography
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Laser Absorbance Change versus Angle of Incidence for a Gold Nanofilm
Appendix B. Morphology Characterization of the Surface of Au Films
References
- Jersch, J.; Demming, F.; Dickmann, K. Nanostructuring with laser radiation in the nearfield of a tip from a scanning force microscope. Appl. Phys. A 1996, 64, 29–32. [Google Scholar] [CrossRef]
- Dickmann, K.; Jersch, J.; Demming, F. Focusing of Laser Radiation in the Near-field of a Tip (FOLANT) for Applications in Nanostructuring. Surf. Interface Anal. 1997, 25, 500–504. [Google Scholar] [CrossRef]
- Yin, X.; Fang, N.; Zhang, X.; Martini, I.B.; Schwartz, B.J. Near-field two-photon nanolithography using an apertureless optical probe. Appl. Phys. Lett. 2002, 81, 3663–3665. [Google Scholar] [CrossRef]
- Chimmalgi, A.; Choi, T.Y.; Grigoropoulos, C.P.; Komvopoulos, K. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 2003, 82, 1146–1148. [Google Scholar] [CrossRef]
- H’dhili, F.; Bachelot, R.; Rumyantseva, A.; Lerondel, G.; Royer, P. Nano-patterning photosensitive polymers using local field enhancement at the end of apertureless SNOM tips. J. Microsc. 2003, 209, 214–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirsanov, A.; Kiselev, A.; Stepanov, A.; Polushkin, N. Femtosecond laser-induced nanofabrication in the near-field of atomic force microscope tip. J. Appl. Phys. 2003, 94, 6822–6826. [Google Scholar] [CrossRef]
- Haefliger, D.; Stemmer, A. Writing subwavelength-sized structures into aluminium films by thermo-chemical apertureless near-field optical microscopy. Ultramicroscopy 2004, 100, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Milner, A.A.; Zhang, K.; Prior, Y. Floating Tip Nanolithography. Nano Lett. 2008, 8, 2017–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcón Casas, I.; Kautek, W. Laser Micro-Nano-Manufacturing and 3D Microprinting; Chapter Apertureless Scanning Near-Field Optical Lithography; Hu, A., Ed.; Springer: New York, NY, USA, 2018; in print. [Google Scholar]
- Novotny, L.; Sánchez, E.J.; Xie, X.S. Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams. Ultramicroscopy 1998, 71, 21–29. [Google Scholar] [CrossRef]
- Martin, Y.C.; Hamann, H.F.; Wickramasinghe, H.K. Strength of the electric field in apertureless near-field optical microscopy. J. Appl. Phys. 2001, 89, 5774–577. [Google Scholar] [CrossRef]
- Esteban, R.; Vogelgesang, R.; Kern, K. Simulation of optical near and far fields of dielectric apertureless scanning probes. Nanotechnology 2006, 17, 475–482. [Google Scholar] [CrossRef]
- Esteban, R.; Vogelgesang, R.; Kern, K. Tip-substrate interaction in optical near-field microscopy. Phys. Rev. B 2007, 75, 195410. [Google Scholar] [CrossRef]
- Huang, S.M.; Hong, M.H.; Lu, Y.F.; Luk’yanchuk, B.S.; Song, W.D.; Chong, T.C. Pulsed-laser assisted nanopatterning of metallic layers combined with atomic force microscopy. J. Appl. Phys. 2002, 91, 3268–3274. [Google Scholar] [CrossRef]
- Bouhelier, A.; Beversluis, M.; Novotny, L. Applications of field-enhanced near-field optical microscopy. Ultramicroscopy 2004, 100, 413–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, R.M.; Panoiu, N.C.; Adams, M.M.; Osgood, R.M.; Neacsu, C.C.; Raschke, M.B. Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. Opt. Express 2006, 14, 2921–2931. [Google Scholar] [CrossRef] [PubMed]
- Hartschuh, A. Tip-Enhanced Near-Field Optical Microscopy. Angew. Chem. Int. Ed. 2008, 47, 8178–8191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huth, F.; Chuvilin, A.; Schnell, M.; Amenabar, I.; Krutokhvostov, R.; Lopatin, S.; Hillenbrand, R. Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy. Nano Lett. 2013, 13, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, X.G. Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction. Appl. Phys. Lett. 2015, 6, 8973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, S.H.; Vester-Petersen, J.; Nazir, A.; Eriksen, E.H.; Julsgaard, B.; Madsen, S.P.; Balling, P. Near-field marking of gold nanostars by ultrashort pulsed laser irradiation: Experiment and simulations. Appl. Phys. A 2018, 124, 210. [Google Scholar] [CrossRef]
- Gerstner, V.; Thon, A.; Pfeiffer, W. Thermal effects in pulsed laser assisted scanning tunneling microscopy. J. Appl. Phys. 2000, 87, 2574–2580. [Google Scholar] [CrossRef]
- Milner, A.A.; Zhang, K.; Garmider, V.; Prior, Y. Heating of an Atomic Force Microscope tip by femtosecond laser pulses. Appl. Phys. A 2010, 99, 1–8. [Google Scholar] [CrossRef]
- Huber, C.; Prior, Y.; Wolfgang, K. Laser-induced cantilever behaviour in apertureless scanning near-field optical microscopes. Meas. Sci. Technol. 2014, 25, 075604. [Google Scholar] [CrossRef]
- Kim, K.; Song, B.; Fernández-Hurtado, V.; Lee, W.; Jeong, W.; Cui, L.; Thompson, D.; Feist, J.; Reid, M.T.H.; García-Vidal, F.J.; et al. Radiative heat transfer in the extreme near field. Nature 2015, 528, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Ganjeh, Y.; Sadat, S.; Thompson, D.; Fiorino, A.; Fernández Hurtado, V.; Feist, J.; García Vidal, F.J.; Cuevas, J.C.; Reddy, P.; et al. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat. Nanotechnol. 2015, 10, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Kloppstech, K.; Könne, N.; Biehs, S.A.; Rodriguez, A.W.; Worbes, L.; Hellmann, D.; Kittel, A. Giant heat transfer in the crossover regime between conduction and radiation. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutoit, B.; Zeisel, D.; Deckert, V.; Zenobi, R. Laser-Induced Ablation through Nanometer-Sized Tip Apertures: Mechanistic Aspects. J. Phys. Chem. B 1997, 101, 6955–6959. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, X.; Martin, O.J.F. Local field enhancement of an infinite conical metal tip illuminated by a focused beam. J. Raman Spectrosc. 2009, 40, 1338–1342. [Google Scholar] [CrossRef] [Green Version]
- Mihaljevic, J.; Hafner, C.; Meixner, A.J. Simulation of a metallic SNOM tip illuminated by a parabolic mirror. Opt. Express 2013, 21, 25926–25943. [Google Scholar] [CrossRef] [PubMed]
- Huber, C.; Trügler, A.; Hohenester, U.; Prior, Y.; Kautek, W. Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation. Phys. Chem. Chem. Phys. 2014, 16, 2289–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoef, A.; Zhu, L.; Israelsen, S.M.; Grüner-Nielsen, L.; Unterhuber, A.; Kautek, W.; Rottwitt, K.; Baltuška, A.; Fernández, A. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber. Opt. Express 2015, 23, 26139–26145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, J.E.; Borgani, R.; Gibson, C.T.; Haviland, D.B.; Higgins, M.J.; Kilpatrick, J.I.; Lu, J.; Mulvaney, P.; Shearer, C.J.; Slattery, A.D.; et al. A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 2016, 87, 093711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohenester, U.; Trügler, A. MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 2012, 183, 370–381. [Google Scholar] [CrossRef]
- Available online: http://physik.uni-graz.at/mnpbem/ (accessed on 3 March 2018).
- Green, M.A. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energy Mater. Sol. Cells 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
- Yakubovsky, D.I.; Arsenin, A.V.; Stebunov, Y.V.; Fedyanin, D.Y.; Volkov, V.S. Optical constants and structural properties of thin gold films. Opt. Express 2017, 25, 25574–25587. [Google Scholar] [CrossRef] [PubMed]
- Karakouz, T.; Holder, D.; Goomanovsky, M.; Vaskevich, A.; Rubinstein, I. Morphology and Refractive Index Sensitivity of Gold Island Films. Chem. Mater. 2009, 21, 5875–5885. [Google Scholar] [CrossRef]
- Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M.A. Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses. J. Phys. Chem. B 2000, 104, 6152–6163. [Google Scholar] [CrossRef] [Green Version]
- González-Rubio, G.; Guerrero-Martínez, A.; Liz-Marzán, L.M. Reshaping, Fragmentation, and Assembly of Gold Nanoparticles Assisted by Pulse Lasers. Acc. Chem. Res. 2016, 49, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Leveugle, E.; Bringa, E.M.; Zhigilei, L.V. Molecular Dynamics Simulation of Laser Melting of Nanocrystalline Au. J. Phys. Chem. C 2010, 114, 5686–5699. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycıoğlu, H.; Elahi, P.; Çetin, B.; Kesim, D.K.; Akçaalan, Ö.; Yavaş, S.; Aşık, M.D.; Öktem, B.; Hoogland, H.; et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finger, J.; Reininghaus, M. Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz. Opt. Express 2014, 22, 18790–18799. [Google Scholar] [CrossRef] [PubMed]
Line 1 | Line 2 | Line 3 | |
---|---|---|---|
Number of passes | 7 | 10 | 14 |
Width (nm) | 36 | 45 | 76 |
Depth (nm) | 0.4 | 0.5 | 1.0 |
Line Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
I (×10W/cm) | 0.7 | 1.0 | 2.0 | 2.7 | 2.9 |
Width (nm) | 71 | 47 | 41 | 60 | 52 |
Depth (nm) | 0.48 | 0.52 | 0.70 | 0.74 | 0.77 |
I (×10W/cm) | F (J/cm) | N (×10) | |
---|---|---|---|
80 | 2.4 | 37 | 0.2 |
86 | 2.4 | 37 | 1.4–4.2 |
88 | 0.15–2.9 | 2–44 | 1.4–4.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcón Casas, I.; Kautek, W. Subwavelength Nanostructuring of Gold Films by Apertureless Scanning Probe Lithography Assisted by a Femtosecond Fiber Laser Oscillator. Nanomaterials 2018, 8, 536. https://doi.org/10.3390/nano8070536
Falcón Casas I, Kautek W. Subwavelength Nanostructuring of Gold Films by Apertureless Scanning Probe Lithography Assisted by a Femtosecond Fiber Laser Oscillator. Nanomaterials. 2018; 8(7):536. https://doi.org/10.3390/nano8070536
Chicago/Turabian StyleFalcón Casas, Ignacio, and Wolfgang Kautek. 2018. "Subwavelength Nanostructuring of Gold Films by Apertureless Scanning Probe Lithography Assisted by a Femtosecond Fiber Laser Oscillator" Nanomaterials 8, no. 7: 536. https://doi.org/10.3390/nano8070536
APA StyleFalcón Casas, I., & Kautek, W. (2018). Subwavelength Nanostructuring of Gold Films by Apertureless Scanning Probe Lithography Assisted by a Femtosecond Fiber Laser Oscillator. Nanomaterials, 8(7), 536. https://doi.org/10.3390/nano8070536