A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Structures and Electronic Properties of H2S, SO2 and the Ni-MoS2 Monolayer
3.2. Adsorption of H2S Gas on the Ni-MoS2 Monolayer
3.3. Adsorption of SO2 Gas on a Ni-MoS2 Monolayer.
3.4. Adsorption of SF6 Gas on the Ni-MoS2 Monolayer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, Y.; Rong, M.; Yang, K.; Yang, A.; Wang, X.; Gao, Q.; Liu, D.; Murphy, A.B. Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment. J. Phys. D Appl. Phys. 2016, 49, 155502. [Google Scholar] [CrossRef]
- Ren, M.; Dong, M.J.L. Statistical Analysis of partial discharges in SF6 gas via optical detection in various spectral ranges. Energies 2016, 9, 152. [Google Scholar] [CrossRef]
- Fridman, A.; Chirokov, A.; Gutsol, A. Non-thermal atmospheric pressure discharges. J. Phys. D Appl. Phys. 2005, 38, R1. [Google Scholar] [CrossRef]
- Gui, Y.; Zhang, X.; Zhang, Y.; Qiu, Y.; Chen, L. Study on the characteristic decomposition components of air-insulated switchgear cabinet under partial discharge. Aip Adv. 2016, 6, 868–871. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, Y.; Zhang, Y.; Qiu, Y.; Chen, L. Influence of humidity and voltage on characteristic decomposition components under needle-plate discharge model. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2633–2640. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, A.; Wang, X.; Murphy, A.B.; Li, X.; Liu, D.; Wu, Y.; Rong, M. Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment. J. Phys. D Appl. Phys. 2016, 49, 385203. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Gong, S.; Feng, B.; Zhou, Z. Theoretical study on gas decomposition mechanism of SF6 by quantum chemical calculation. Comput. Theor. Chem. 2016, 1088, 24–31. [Google Scholar] [CrossRef]
- Zeng, F.; Tang, J.; Zhang, X.; Sun, H.; Yao, Q.; Miao, Y. Study on the influence mechanism of trace H2O on SF6 thermal decomposition characteristic components. IEEE Trans. Dielectr. Electr. Insul. 2015, 24, 367–374. [Google Scholar]
- Wilk, A.; Więcław-Solny, L.; Śpiewak, D.; Spietz, T.; Kierzkowska-Pawlak, H. A selection of amine sorbents for CO2 capture from flue gases. Chem. Process Eng. 2015, 36, 49–57. [Google Scholar] [CrossRef]
- Wilk, A.; Więcław-Solny, L.; Tatarczuk, A.; Krótki, A.; Spietz, T.; Chwoła, T. Solvent selection for CO2 capture from gases with high carbon dioxide concentration. Korean J. Chem. Eng. 2017, 34, 2275–2283. [Google Scholar] [CrossRef]
- Tang, J.; Yang, X.; Yang, D.; Yao, Q.; Miao, Y.; Zhang, C.; Zeng, F. Using SF6 decomposed component analysis for the diagnosis of partial discharge severity initiated by free metal particle defect. Energies 2017, 10, 1119. [Google Scholar] [CrossRef]
- Tang, J.; Yang, X.; Yao, Q.; Miao, Y.; She, X.; Zeng, F. Correlation analysis between SF6 decomposed components and negative DC partial discharge strength initiated by needle-plate defect. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 382–389. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, Y.; Dai, Z. A simulation of Pd-doped SWCNTs used to detect SF6 decomposition components under partial discharge. Appl. Surf. Sci. 2014, 315, 196–202. [Google Scholar] [CrossRef]
- D’Apuzzo, F.; Piacenti, A.R.; Giorgianni, F.; Autore, M.; Guidi, M.C.; Marcelli, A.; Schade, U.; Ito, Y.; Chen, M.; Lupi, S. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nat. Commun. 2017, 8, 14885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gui, Y.; Xiao, H.; Zhang, Y. Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory. Appl. Surf. Sci. 2016, 379, 47–54. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, Y.; Dong, X. Preparation and application of TiO2 nanotube array gas sensor for SF6-insulated equipment detection: A review. Nanoscale Res. Lett. 2016, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Yu, X.Y.; Li, Z.; Ungyu, P.; Lou, X.W. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci. Adv. 2016, 2, e1600021. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Akbar, K.; Vikraman, D.; Shehzad, M.; Jung, S.; Seo, Y.; Jung, J. Cu/MoS2/ITO based hybrid structure for catalysis of hydrazine oxidation. RSC Adv. 2015, 5, 15374–15378. [Google Scholar] [CrossRef]
- Lukowski, M.A.; Daniel, A.S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 2016, 93, 63–70. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, E.; Hu, K.; Xu, Y.; Hu, X. Formation of an adsorption film of MoS2 nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear. Tribol. Int. 2015, 92, 172–183. [Google Scholar] [CrossRef]
- Yoon, H.S.; Joe, H.E.; Sun, J.K.; Lee, H.S.; Im, S.; Min, B.K.; Jun, S.C. Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Sci. Rep. 2015, 5, 10440. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, L.; Jiang, X.; Tian, X.; Huang, Y.; Hou, P.; Zhang, S.; Xu, X. Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route. Appl. Surf. Sci. 2018, 447, 49–56. [Google Scholar] [CrossRef]
- Ma, D.; Ju, W.; Li, T.; Zhang, X.; He, C.; Ma, B.; Lu, Z.; Yang, Z. The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study. Appl. Surf. Sci. 2016, 383, 98–105. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.; Tong, Y.; Zhao, L.; Zhang, Y.; Qiu, Y.; Lin, X. First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules. Appl. Surf. Sci. 2017, 419, 522–530. [Google Scholar] [CrossRef]
- Song, Y.W.; Ko, T.S.; Cheng, C.H.; Lin, D.Y.; Ying, S.H. Optical and electrical properties of MoS2 and Fe-doped MoS2. Jpn. J. Appl. Phys. 2014, 53, 04EH07. [Google Scholar]
- Yue, Q.; Chang, S.; Qin, S.; Li, J. Functionalization of monolayer MoS2 by substitutional doping: A first-principles study. Phys. Lett. A 2013, 377, 1362–1367. [Google Scholar] [CrossRef]
- Peng, S.; Zhao, M.; Cui, G.; Jiang, X. A theoretical study on the cyclopropane adsorption onto the copper surfaces by density functional theory and quantum chemical molecular dynamics methods. J. Mol. Catal. A Chem. 2004, 220, 189–198. [Google Scholar]
- Delley, B. Dmol3 DFT studies: From molecules and molecular environments to surfaces and solids. Comput. Mater. Sci. 2000, 17, 122–126. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens Matter. 1992, 46, 6671–6687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maximoff, S.N.; Ernzerhof, M.; Scuseria, G.E. Current-dependent extension of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 2004, 120, 2105–2109. [Google Scholar] [CrossRef] [PubMed]
- Inada, Y.; Orita, H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem. 2010, 29, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Karim, N.A.; Kamarudin, S.K.; Shyuan, L.K.; Yaakob, Z.; Daud, W.R.W.; Khadum, A.A.H. Novel cathode catalyst for DMFC: Study of the density of states of oxygen adsorption using density functional theory. Int. J. Hydrogen Energy 2014, 39, 17295–17305. [Google Scholar] [CrossRef]
- Hu, W.; Lin, L.; Yang, C. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations. J. Chem. Theory Comput. 2017, 13, 5458–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveh, D.; Ramasubramaniam, A. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B 2013, 87, 195201. [Google Scholar]
- Bettens, R.P.A.; Lee, A.M. On the accurate reproduction of ab initio interaction energies between an enzyme and substrate. Chem. Phys. Lett. 2007, 449, 341–346. [Google Scholar] [CrossRef]
- Fonseca, G.C.; Handgraaf, J.W.; Baerends, E.J.; Bickelhaupt, F.M. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J. Comput. Chem. 2004, 25, 189–210. [Google Scholar] [CrossRef] [PubMed]
- Diwaker. Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of 2-(5-(4-Chlorophenyl)-3-(pyridin-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole by DFT method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; Tang, C.; Zhou, Q.; Xu, L.; Zhao, Z.; Zhang, X. The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: A first-principle study. Appl. Surf. Sci. 2018, 440, 846–852. [Google Scholar] [CrossRef]
Gas Molecule | Bond Angle (°) | Bond Length (Å) | ||
---|---|---|---|---|
Type | Angle | Type | Length | |
SO2 | O1-S-O2 | 120.2 | O1-S | 1.480 |
H2S | H1-S-H2 | 91.2 | H1-S | 1.356 |
SF6 | F1-S-F2 | 90.0 | F1-S | 1.616 |
Configuration | Eads (eV) | Qt (e) | dH1-S (Å) | dNi-H2S (Å) | ∠H1-S-H2 (°) |
---|---|---|---|---|---|
Figure 4 | −1.319 | 0.254 | 1.362 | 2.205 | 91.5 |
Configuration | Eads (eV) | Qt (e) | dO1-S (Å) | dO2-S (Å) | dNi-S (Å) | dNi-O1 (Å) | ∠O1-S-O2 (°) |
---|---|---|---|---|---|---|---|
M1 | −0.823 | −0.094 | 1.543 | 1.489 | - | 1.903 | 115.2 |
M2 | −1.382 | −0.016 | 1.481 | 1.481 | 2.059 | - | 119.2 |
M3 | −1.327 | −0.206 | 1.575 | 1.494 | 2.258 | 1.948 | 116.6 |
Configuration | Eads (eV) | Qt (e) | dNi-F1 (Å) | dNi-F2 (Å) | dF1-S (Å) | dF2-S (Å) | ∠F1-S-F2 (°) |
---|---|---|---|---|---|---|---|
M1 | −0.174 | −0.445 | 1.875 | 3.560 | 1.796 | 1.684 | 89.3 |
M2 | −0.181 | −0.454 | 1.871 | 3.511 | 1.851 | 1.685 | 89.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Gui, Y.; Kang, J.; Wang, W.; Tang, C. A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer. Nanomaterials 2018, 8, 646. https://doi.org/10.3390/nano8090646
Wei H, Gui Y, Kang J, Wang W, Tang C. A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer. Nanomaterials. 2018; 8(9):646. https://doi.org/10.3390/nano8090646
Chicago/Turabian StyleWei, Huangli, Yingang Gui, Jian Kang, Weibo Wang, and Chao Tang. 2018. "A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer" Nanomaterials 8, no. 9: 646. https://doi.org/10.3390/nano8090646
APA StyleWei, H., Gui, Y., Kang, J., Wang, W., & Tang, C. (2018). A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer. Nanomaterials, 8(9), 646. https://doi.org/10.3390/nano8090646