Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chubenko, O.; Baturin, S.S.; Kovi, K.K.; Sumant, A.V.; Baryshev, S.V. Locally resolved electron emission area and unified view of field emission from ultrananocrystalline diamond films. ACS Appl. Mater. Interfaces 2017, 9, 33229–33237. [Google Scholar] [CrossRef] [PubMed]
- Terranova, M.L.; Orlanducci, S.; Rossi, M.; Tamburri, E. Nanodiamonds for field emission: State of the art. Nanoscale 2015, 7, 5094–5114. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, K.J.; Ficek, M.; Kunuku, S.; Panda, K.; Yeh, C.J.; Park, J.Y.; Sawczak, M.; Michałowski, P.P.; Leou, K.C.; Bogdanowicz, R.; et al. Self-organized multi-layered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices. Nanoscale 2018, 10, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, K.J.; Kurian, J.; Chen, H.C.; Dong, C.L.; Lee, C.Y.; Tai, N.H.; Lin, I.N. Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma. J. Phys. D Appl. Phys. 2012, 45, 365303. [Google Scholar] [CrossRef]
- Janssen, W.; Turner, S.; Sakr, G.; Jomard, F.; Barjon, J.; Degutis, G.; Lu, Y.G.; D’Haen, J.; Hardy, A.; Van Bael, M.; et al. Substitutional phosphorus incorporation in nanocrystalline CVD diamond thin films. Phys. Status Solidi RRL 2014, 8, 705–709. [Google Scholar] [CrossRef]
- Saravanan, A.; Huang, B.R.; Sankaran, K.J.; Tai, N.H.; Lin, I.N. Highly conductive diamond-graphite nanohybrid films with enhanced electron field emission and microplasma illumination properties. ACS Appl. Mater. Interfaces 2015, 7, 14035–14042. [Google Scholar] [CrossRef] [PubMed]
- Bernholc, J.; Kajihara, S.A.; Wang, C.; Antonelli, A.; Davis, R.F. Theory of native defects, doping and diffusion in diamond and silicon carbide. Mater. Sci. Eng. B 1992, 11, 265–272. [Google Scholar] [CrossRef]
- Khmelnitsky, R.A.; Saraykin, V.V.; Dravin, V.A.; Zavedeyev, E.V.; Makarov, S.V.; Bronsky, V.S.; Gippius, A.A. Lithium implanted into diamond: Regular trends and anomalies. Surf. Coat. Tech. 2016, 307, 236–242. [Google Scholar] [CrossRef]
- O’Donnell, K.M.; Martin, T.L.; Edmonds, M.T.; Tadich, A.; Thomsen, L.; Ristein, J.; Pakes, C.I.; Fox, N.A.; Ley, L. Photoelectron emission from lithiated diamond. Phys. Status Solidi A 2014, 211, 2209–2222. [Google Scholar] [CrossRef]
- Te Nijenhuis, J.; Cao, G.Z.; Smits, P.C.H.J.; van Enkevort, W.J.P.; Giling, L.J.; Alkemade, P.F.A.; Nesladek, M.; Remes, Z. Incorporation of lithium in single crystal diamond: Diffusion profiles and optical and electrical properties. Diam. Relat. Mater. 1997, 6, 1726–1732. [Google Scholar] [CrossRef]
- Uzan-Saguy, C.; Cytermann, C.; Fizgeer, B.; Richter, V.; Brener, R.; Kalish, R. Diffusion of lithium in diamond. Phys. Status Solidi A 2002, 193, 508–516. [Google Scholar] [CrossRef]
- Othman, M.Z.; May, P.W.; Fox, N.A.; Heard, P.J. Incorporation of lithium and nitrogen into CVD diamond thin films. Diam. Relat. Mater. 2014, 44, 1–7. [Google Scholar] [CrossRef]
- Halliwell, S.C.; May, P.W.; Fox, N.A.; Othman, M.Z. Investigations of the co-doping of boron and lithium into CVD diamond thin films. Diam. Relat. Mater. 2017, 76, 115–122. [Google Scholar] [CrossRef]
- Sankaran, K.J.; Srinivasu, K.; Yeh, C.J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K.C.; Leung, K.T.; Van Bael, M.K.; et al. Field electron emission enhancement in lithium implanted and annealed nitrogen incorporated nanocrystalline diamond films. Appl. Phys. Lett. 2017, 110, 261602. [Google Scholar] [CrossRef]
- Joseph, P.T.; Tai, N.H.; Lin, I.N. Monolithic n-type conductivity on low temperature grown freestanding ultrananocrystalline diamond films. Appl. Phys. Lett. 2010, 97, 042107. [Google Scholar] [CrossRef]
- Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; Haen, J.D.; Haenen, K.; Verbeeck, J.; et al. CVD diamond growth from nanodiamond seeds buried under a thin chromium layer. Diam. Relat. Mater. 2016, 64, 163–168. [Google Scholar] [CrossRef]
- Drijkoningen, S.; Pobedinskas, P.; Korneychuk, S.; Momot, A.; Balasubramaniam, Y.; Van Bael, M.K.; Turner, S.; Verbeeck, J.; Nesladek, M.; Haenen, K. On the origin of diamond plates deposited at low temperature. Cryst. Growth Des. 2017, 17, 4306–4314. [Google Scholar] [CrossRef]
- Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A 1928, 119, 173–181. [Google Scholar] [CrossRef]
- Urban, F.; Passacantando, M.; Giubileo, F.; Iemmo, L.; Bartolomeo, A.D. Transport and field emission properties of MoS2 bilayers. Nanomaterials 2018, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.; Cox, D.C.; Silva, S.R.P. Electron field emission from a single carbon nanotube: Effects of anode location. Appl. Phys. Lett. 2005, 87, 103112. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, C.; Castiglioni, C.; Zerbi, G.; Mullen, K. Common force field for graphite and polycyclic aromatic hydrocarbons. Phys. Rev. B 1999, 60, 12710. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 63, 121405. [Google Scholar] [CrossRef]
- Ilie, A.; Ferrari, A.C.; Yagi, T.; Rodil, S.E.; Robertson, J.; Barborini, E.; Milani, P. Role of sp2 phase in field emission from nanostructured carbons. J. Appl. Phys. 2001, 90, 2024–2032. [Google Scholar] [CrossRef]
- Cancado, L.G.; Takai, K.; Enoki, T. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Joseph, P.T.; Tai, N.H.; Lee, C.Y.; Niu, H.; Pong, W.F.; Lin, I.N. Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films. J. Appl. Phys. 2008, 103, 043720. [Google Scholar] [CrossRef]
- Hu, X.J.; Ye, J.S.; Liu, H.J.; Shen, Y.G.; Chen, X.H.; Hu, H. n-type conductivity and phase transition in ultrananocrystalline diamond films by oxygen ion implantation and annealing. J. Appl. Phys. 2011, 109, 053524. [Google Scholar] [CrossRef]
- Corbella, C.; Oncins, G.; Gomez, M.A.; Polo, M.C.; Pascual, E.; Cespedes, J.G.; Andujar, J.L.; Bertran, E. Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering. Diam. Relat. Mater. 2005, 14, 1103–1107. [Google Scholar] [CrossRef]
- Khun, N.W.; Liu, E.; Yang, G.C.; Ma, W.G.; Jiang, S.P. Structure and corrosion behavior of platinum/ruthenium/nitrogen doped diamond like carbon thin films. J. Appl. Phys. 2009, 106, 013506. [Google Scholar] [CrossRef]
- Pleskov, Y.V.; Evstefeva, Y.E.; Baranov, A.M. Threshold effect of admixtures of platinum on the electrochemical activity of amorphous diamond-like carbon thin films. Diam. Relat. Mater. 2002, 11, 1518–1522. [Google Scholar] [CrossRef]
- Smith, S.P.; Landstrass, M.I.; Wilson, R.G.; Benninghoven, A.; Janssen, K.T.F.; Tumpner, J.; Werner, H.W. Secondary Ion Mass Spectrometry, SIMS VIII, 8th ed.; Wiley: New York, NY, USA, 1992; p. 159. [Google Scholar]
- Sankaran, K.J.; Yeh, C.J.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Sundaravel, B.; Leou, K.C.; Leung, K.T.; Van Bael, M.K.; et al. Microstructural Effect on the Enhancement of Field Electron Emission Properties of Nanocrystalline Diamond Films by Li-Ion Implantation and Annealing Processes. ACS Omega 2018, in press. [Google Scholar]
- Yamaguchi, H.; Masuzawa, T.; Nozue, S.; Kudo, Y.; Saito, I.; Koe, J.; Kudo, M.; Yamada, T.; Takakuwa, Y.; Okano, K. Electron emission from conduction band of diamond with negative electron affinity. Phys. Rev. B 2009, 80, 165321. [Google Scholar] [CrossRef] [Green Version]
- Geis, M.W.; Deneault, S.; Krohn, K.E.; Marchant, M.; Lyszczarz, T.M.; Cooke, D.L. Field emission at 10 V cm−1 with surface emission cathodes on negative-electron-affinity insulators. Appl. Phys. Lett. 2005, 87, 192115. [Google Scholar] [CrossRef]
Materials | Resistivity (Ω·cm) | Turn-on Field (V/µm) | FEE Current Density (mA/cm2) | Life-Time (min) |
---|---|---|---|---|
Li ion implanted NCD [14] | 9 × 10–2 | 10.6 | 25.5 @ 23.2 V/µm | 1090 |
Freestanding Li doped UNCD [15] | 1.2 | 4.2 | 0.3 @ 10.0 V/µm | --- |
NCD/Si [Present study] | 7.1 × 104 | 21.3 | 4.8 @ 35.7 V/µm | 88 |
NCD/Cr/Si [Present study] | 4.5 × 103 | 11.8 | 6.4 @ 20.0 V/µm | 215 |
NCD/Cr/LNO [Present study] | 1 × 10–2 | 2.3 | 11.0 @ 4.9 V/µm | 445 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankaran, K.J.; Panda, K.; Hsieh, P.-Y.; Pobedinskas, P.; Park, J.Y.; Van Bael, M.K.; Tai, N.-H.; Lin, I.-N.; Haenen, K. Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials 2018, 8, 653. https://doi.org/10.3390/nano8090653
Sankaran KJ, Panda K, Hsieh P-Y, Pobedinskas P, Park JY, Van Bael MK, Tai N-H, Lin I-N, Haenen K. Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials. 2018; 8(9):653. https://doi.org/10.3390/nano8090653
Chicago/Turabian StyleSankaran, Kamatchi Jothiramalingam, Kalpataru Panda, Ping-Yen Hsieh, Paulius Pobedinskas, Jeong Young Park, Marlies K Van Bael, Nyan-Hwa Tai, I-Nan Lin, and Ken Haenen. 2018. "Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties" Nanomaterials 8, no. 9: 653. https://doi.org/10.3390/nano8090653
APA StyleSankaran, K. J., Panda, K., Hsieh, P. -Y., Pobedinskas, P., Park, J. Y., Van Bael, M. K., Tai, N. -H., Lin, I. -N., & Haenen, K. (2018). Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials, 8(9), 653. https://doi.org/10.3390/nano8090653