Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Hazy Transparent Films via “Blending” Method
2.3. Fabrication of Hazy Transparent Films via “Coating” Method
2.4. Analysis
2.4.1. Surface and Cross-Sectional Morphology
2.4.2. Optical Properties
2.4.3. Thermal Properties
2.4.4. Mechanical Properties
2.4.5. Resistance to Corrosive Chemicals Property
2.4.6. Resistance to Photodegradation Property
3. Results and Discussion
3.1. Optical Properties
3.2. Surface and Cross-Sectional Morphology
3.3. Thermal Property
3.4. Mechanical Property
3.5. Resistance to Corrosive Chemicals and Photodegradation Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chung, H.H.; Sun, L. Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications. J. Soc. Inf. Disp. 2012, 11, 237–242. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Cui, Y.; Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 2014, 13, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.; Baek, S.H.; Song, B.; Kang, J.W.; Cho, C.H. Periodically diameter-modulated semiconductor nanowires for enhanced optical absorption. Adv. Mater. 2016, 28, 2465–2465. [Google Scholar] [CrossRef]
- Huang, T.C.; Ciou, J.R.; Huang, P.H.; Hsieh, K.H.; Yang, S.Y. Fast fabrication of integrated surface-relief and particle-diffusing plastic diffuser by use of a hybrid extrusion roller embossing process. Opt. Express 2008, 16, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Huang, Y.C. Manufacture of dual-side surface-relief diffusers with various cross angles using ultrasonic embossing technique. Opt. Express 2009, 17, 18083–18092. [Google Scholar] [CrossRef]
- Hassinen, T.; Eiroma, K.; Mäkelä, T.; Ermolov, V. Printed pressure sensor matrix with organic field-effect transistors. Sen. Actuator A-Phys. 2015, 236, 343–348. [Google Scholar] [CrossRef]
- Koga, H.; Nogi, M.; Komoda, N.; Nge, T.T.; Sugahara, T.; Suganuma, K. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG. Asia. Mater. 2014, 6, 93. [Google Scholar] [CrossRef]
- Shih, T.K.; Chen, C.F.; Ho, J.R.; Chuang, F.T. Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectron. Eng. 2006, 83, 2499–2503. [Google Scholar] [CrossRef]
- Chong, Y.P.; Kim, J.M.; Sun, I.K.; Yong, N.H.; Choi, Y.S. Holographic diffuser by use of a silver halide sensitized gelatin process. Appl. Opt. 2003, 42, 2482–2491. [Google Scholar]
- Sakai, D.; Harada, K.; Kamemaru, S.I.; El-Morsy, M.A.; Itoh, M.; Yatagai, T. Direct fabrication of surface relief holographic diffusers in azobenzene polymer films. Opt. Rev. 2005, 12, 383–386. [Google Scholar] [CrossRef]
- Chang, S.I.; Yoon, J.B.; Kim, H.; Kim, J.J.; Lee, B.K.; Shin, D.H. Microlens array diffuser for a light-emitting diode backlight system. Opt. Lett. 2006, 31, 3016–3018. [Google Scholar] [CrossRef] [PubMed]
- Méndez, E.R.; García-Guerrero, E.E.; Escamilla, H.M.; Maradudin, A.A.; Leskova, T.A.; Shchegrov, A.V. Photofabrication of random achromatic optical diffusers for uniform illumination. Appl. Opt. 2001, 40, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Parikka, M.; Kaikuranta, T.; Laakkonen, P.; Lautanen, J.; Tervo, J.; Honkanen, M.; Kuittinen, M.; Turunen, J. Deterministic diffractive diffusers for displays. Appl. Opt. 2001, 40, 2239–2246. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, H.; Preston, C.; Han, X.; Li, Y.; Lee, S.; Chai, X.; Chen, G.; Hu, L. Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J. Mater. Chem. C. 2013, 1, 6191–6197. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, Z.; Zhu, W.; Dai, J.; Yao, Y.; Fei, S.; Preston, C.; Wu, W.; Peng, P.; Jang, N. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 2015, 10, 1369–1377. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Koga, H.; Suganuma, K.; Nogi, M. Hazy transparent cellulose nanopaper. Sci. Rep-UK 2017, 7, 41590. [Google Scholar] [CrossRef]
- Yang, W.; Bian, H.; Jiao, L.; Wu, W.; Deng, Y.; Dai, H. High wet-strength, thermally stable and transparent TEMPO-oxidized cellulose nanofibril film via cross-linking with poly-amide epichlorohydrin resin. RSC Adv. 2017, 7, 31567–31573. [Google Scholar] [CrossRef]
- Saito, T.; Nishiyama, Y.; Putaux, J.L.; Vignon, M.; Isogai, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7, 1687–1691. [Google Scholar] [CrossRef]
- Plastics, D.O. Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics; ASTM: West Conshohocken, PA, USA, 2012; Volume 1, pp. 1–7. [Google Scholar]
- Hu, L.; Zheng, G.; Yao, J.; Liu, N.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z.; Fan, S.; Bloking, J.T. Transparent and conductive paper from nanocellulose fibers. Energ. Environ. Sci. 2013, 6, 513–518. [Google Scholar] [CrossRef]
- Baumgartner, M.; Coppola, M.E.; Sariciftci, N.S.; Glowacki, E.D.; Bauer, S.; Irimia-Vladu, M. Emerging “green” Materials and technologies for electronics. In Green Materials for Electronics; Wiley-VCH: Weinheim, Germany, 2017; p. 101. [Google Scholar]
- Ha, D.; Fang, Z.; Zhitenev, N.B. Paper in electronic and optoelectronic devices. Adv. Electron. Mater. 2018, 4, 1700593. [Google Scholar] [CrossRef]
- Zhou, P.; Zhu, P.; Chen, G.; Liu, Y.; Kuang, Y.; Liu, Y.; Fang, Z. A study on the transmission haze and mechanical properties of highly transparent paper with different fiber species. Cellulose 2018, 25, 2051–2061. [Google Scholar] [CrossRef]
- Yang, W.; Jiao, L.; Min, D.; Liu, Z.; Dai, H. Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Adv. 2017, 7, 10463–10468. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Jiao, L.; Liu, W.; Deng, Y.; Dai, H. Morphology control for tunable optical properties of cellulose nanofibrils films. Cellulose 2018, 25, 5909–5918. [Google Scholar] [CrossRef]
- Yan, Q.; Sabo, R.; Wu, Y.; Zhu, J.Y.; Cai, Z. Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 2015, 22, 1091–1102. [Google Scholar]
- Yu, H.; Qin, Z.; Liang, B.; Liu, N.; Zhou, Z.; Chen, L. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 2013, 1, 3938–3944. [Google Scholar] [CrossRef]
- Zhang, Y.; Heo, Y.; Son, Y. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon 2018, 142, 445–460. [Google Scholar] [CrossRef]
- Zhang, Y.; Choi, J.; Park, S. Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications. Compos. Part A Appl. S. 2018, 109, 498–506. [Google Scholar] [CrossRef]
- Sun, X.; Wu, Q.; Ren, S.; Lei, T. Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 2015, 22, 1123–1133. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, H.; Xu, M.; Zhuang, Z.; Xu, M.; Dai, H. High yield preparation method of thermally stable cellulose nanofibers. Bioresources 2014, 9, 1986–1997. [Google Scholar] [CrossRef]
- Mecking, S. Nature or petrochemistry-biologically degradable materials. Angew. Chem. Int. Edit. 2010, 43, 1078–1085. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, Z.; Preston, C.; Li, Y.; Hu, L. Transparent paper: Fabrications, properties, and device applications. Energ. Environ. Sci. 2013, 7, 269–287. [Google Scholar] [CrossRef]
- Benítez, A.J.; Torresrendon, J.; Poutanen, M.; Walther, A. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 2013, 14, 4497–4506. [Google Scholar] [CrossRef] [PubMed]
- Siró, I.; Plackett, D.; Siro, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
Sample | Thickness (μm) | Upper Surface Roughness (nm) | Bottom Surface Roughness (nm) | Transmittance (%) | Haze (%) |
---|---|---|---|---|---|
TOCN films | 34.6 | 6.25 | 6.25 | 89 | 3.8 |
TOCNs/TOWFs-B films | 69.2 | 279 | 279 | 83 | 50 |
TOCNs/TOWFs-C films | 80.5 | 918 | 6.25 | 85 | 62 |
Sample | Stage I | Stage II | CY (%) | ||
---|---|---|---|---|---|
Tmax (°C) | WLRmax (%/min) | Tmax (°C) | WLRmax (%/min) | ||
TOCN films | 244 | 4.7 | 319 | 4.7 | 12.7 |
TOCNs/TOWFs-B films | 250 | 4.8 | 318 | 5.7 | 22.0 |
TOCNs/TOWFs-C films | 250 | 4.6 | 327 | 5.9 | 28.7 |
Sample | Tensile Strength (MPa) | Young’s Modulus (GPa) | Strain at Break (%) |
---|---|---|---|
TOCN films | 92 ± 6.5 | 9.81 ± 1.3 | 0.98 ± 0.2 |
TOCNs/TOWFs-B films | 75 ± 3.5 | 10.49 ± 2.1 | 0.75 ± 0.1 |
TOCNs/TOWFs-C films | 80 ± 0.1 | 15.30 ± 1.1 | 0.78 ± 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Jiao, L.; Liu, W.; Dai, H. Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers. Nanomaterials 2019, 9, 107. https://doi.org/10.3390/nano9010107
Yang W, Jiao L, Liu W, Dai H. Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers. Nanomaterials. 2019; 9(1):107. https://doi.org/10.3390/nano9010107
Chicago/Turabian StyleYang, Weisheng, Liang Jiao, Wei Liu, and Hongqi Dai. 2019. "Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers" Nanomaterials 9, no. 1: 107. https://doi.org/10.3390/nano9010107
APA StyleYang, W., Jiao, L., Liu, W., & Dai, H. (2019). Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers. Nanomaterials, 9(1), 107. https://doi.org/10.3390/nano9010107