Controlled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites
Abstract
:1. Introduction
2. Results
2.1. TiO2 Nanoparticles Characterization
2.1.1. X-ray Diffraction (XRD) Studies
2.1.2. Morphology
2.1.3. Total Reflection X-Ray Fluorescence Analysis
2.1.4. Microstructural Evolution during Annealing
2.1.5. Mechanical Properties of Nano TiO2 Sols-Mortar
2.1.6. Photocatalytic Efficiency
- the support must be resistant to oxidative radicals generated in aqueous solution and have high surface area, an accessible volume of micropores, and narrow pore size distribution.
- the photodegradation of organic pollutants must proceed with acceptable kinetics.
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Characterization
4.3. Photocatalytic Studies
Author Contributions
Funding
Conflicts of Interest
References
- Maddalena, R.; Roberts, J.J.; Hamilton, A. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. 2018, 186, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Kou, S.C.; Poon, C.S. Photocatalytic cement-based materials: comparison of nitrogen oxides and toluene removal potentials and evaluation of self-cleaning performance. Build. Environ. 2011, 46, 1827–1833. [Google Scholar] [CrossRef]
- Ballari, M.M.; Hunger, M.; Hüsken, G.; Brouwers, H. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl. Catal. B Environ. 2010, 95, 245–254. [Google Scholar] [CrossRef]
- Hüsken, G.; Hunger, M.; Brouwers, H. Experimental study of photocatalytic concrete products for air purification. Build. Environ. 2009, 44, 2463–2474. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, C.; Li, Q.; Zhang, W.; Cao, L.; Ye, J. Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete. J. Clean. Prod. 2015, 87, 762–765. [Google Scholar] [CrossRef]
- Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, Q.; Peng, B.; Chai, L.; Liu, H. Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue. Constr. Build. Mater. 2016, 106, 236–242. [Google Scholar] [CrossRef]
- Munter, R. Advanced oxidation processes–current status and prospects. Proc. Est. Acad. Sci. Chem 2001, 50, 59–80. [Google Scholar]
- Neppolian, B.; Choi, H.; Sakthivel, S.; Arabindoo, B.; Murugesan, V. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater. 2002, 89, 303–317. [Google Scholar] [CrossRef]
- Malato, S.; Blanco, J.; Vidal, A.; Richter, C. Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl. Catal. B Environ. 2002, 37, 1–15. [Google Scholar] [CrossRef]
- De Andrade, F.; De Lima, G.; Augusti, R.; da Silva, J.; Coelho, M.; Paniago, R.; Machado, I. A novel TiO2/autoclaved cellular concrete composite: From a precast building material to a new floating photocatalyst for degradation of organic water contaminants. J. Water Process Eng. 2015, 7, 27–35. [Google Scholar] [CrossRef]
- Faraldos, M.; Kropp, R.; Anderson, M.; Sobolev, K. Photocatalytic hydrophobic concrete coatings to combat air pollution. Catal. Today 2016, 259, 228–236. [Google Scholar] [CrossRef]
- Mills, A.; Lee, S.K. A web-based overview of semiconductor photochemistry-based current commercial applications. J. Photochem. Photobiol. A Chem. 2002, 152, 233–247. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cerro-Prada, E. Cement Microstructure: Fostering Photocatalysis. In Cement Based Materials; Saleh, H.E.D.M., Rahman, R.O.A., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 4. [Google Scholar]
- Cerro-Prada, E.; Manso, M.; Torres, V.; Soriano, J. Microstructural and photocatalytic characterization of cement-paste sol-gel synthesized titanium dioxide. Front. Struct. Civ. Eng. 2016, 10, 189–197. [Google Scholar] [CrossRef]
- Cárdenas, C.; Tobón, J.I.; García, C.; Vila, J. Functionalized building materials: Photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles. Constr. Build. Mater 2012, 36, 820–825. [Google Scholar] [CrossRef]
- Lucas, S.; Ferreira, V.; de Aguiar, J.B. Incorporation of titanium dioxide nanoparticles in mortars—Influence of microstructure in the hardened state properties and photocatalytic activity. Cem. Concr. Res. 2013, 43, 112–120. [Google Scholar] [CrossRef]
- Lee, B.Y.; Kurtis, K.E. Influence of TiO2 nanoparticles on early C3S hydration. J. Am. Ceram. Soc. 2010, 93, 3399–3405. [Google Scholar] [CrossRef]
- Meng, T.; Yu, Y.; Qian, X.; Zhan, S.; Qian, K. Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater 2012, 29, 241–245. [Google Scholar] [CrossRef]
- Denecker, G.; Verhoeven, W.; Leuridan, J.; Sluyts, D. Process for the Production of High-Grade Titanium Dioxide by Sulfate Method. U.S. Patent 4,986,742, 22 January 1991. [Google Scholar]
- Macwan, D.; Dave, P.N.; Chaturvedi, S. A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 2011, 46, 3669–3686. [Google Scholar] [CrossRef]
- Terabe, K.; Kato, K.; Miyazaki, H.; Yamaguchi, S.; Imai, A.; Iguchi, Y. Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. J. Mater. Sci. 1994, 29, 1617–1622. [Google Scholar] [CrossRef]
- Bettinelli, M.; Dallacasa, V.; Falcomer, D.; Fornasiero, P.; Gombac, V.; Montini, T.; Romano, L.; Speghini, A. Photocatalytic activity of TiO2 doped with boron and vanadium. J. Hazard. Mater. 2007, 146, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tang, X.; Mo, C.; Qiang, Z. Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium. J. Solid State Chem. 2008, 181, 913–919. [Google Scholar] [CrossRef]
- Huang, M.; Xu, C.; Wu, Z.; Huang, Y.; Lin, J.; Wu, J. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 2008, 77, 327–334. [Google Scholar] [CrossRef]
- Lee, A.C.; Lin, R.H.; Yang, C.Y.; Lin, M.H.; Wang, W.Y. Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method. Mater. Chem. Phys. 2008, 109, 275–280. [Google Scholar] [CrossRef]
- Gu, D.E.; Yang, B.C.; Hu, Y.D. V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catal. Commun. 2008, 9, 1472–1476. [Google Scholar] [CrossRef]
- Sivaram, V.; Crossland, E.J.; Leijtens, T.; Noel, N.K.; Alexander-Webber, J.; Docampo, P.; Snaith, H.J. Observation of Annealing-Induced Doping in TiO2 Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 1821–1827. [Google Scholar] [CrossRef]
- Di Paola, A.; Bellardita, M.; Palmisano, L. Brookite, the least known TiO2 photocatalyst. Catalysts 2013, 3, 36–73. [Google Scholar] [CrossRef]
- Di Paola, A.; Cufalo, G.; Addamo, M.; Bellardita, M.; Campostrini, R.; Ischia, M.; Ceccato, R.; Palmisano, L. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 366–376. [Google Scholar] [CrossRef]
- Streli, C. Recent advances in TXRF. Appl. Spectrosc. Rev. 2006, 41, 473–489. [Google Scholar] [CrossRef]
- Potts, P.J.; Ellis, A.T.; Kregsamer, P.; Marshall, J.; Streli, C.; West, M.; Wobrauschek, P. Atomic spectrometry update. X-ray fluorescence spectrometry. J. Anal. At. Spectr. 2001, 16, 1217–1237. [Google Scholar] [CrossRef]
- Shannon, R.D.; Pask, J.A. Kinetics of the Anatase-Rutile Transformation. J. Am. Ceram. Soc. 1965, 48, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Reidy, D.; Holmes, J.; Morris, M. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J. Eur. Ceram. Soc. 2006, 26, 1527–1534. [Google Scholar] [CrossRef]
- Swamy, V.; Kuznetsov, A.; Dubrovinsky, L.S.; Caruso, R.A.; Shchukin, D.G.; Muddle, B.C. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Phys. Rev. B 2005, 71, 184302. [Google Scholar] [CrossRef]
- Jiang, X.; Shi, A.; Wang, Y.; Li, Y.F.; Pan, C. Effect of surface microstructure of TiO2 film from micro-arc oxidation on its photocatalytic activity: A HRTEM study. Nanoscale 2011, 3, 3573–3577. [Google Scholar] [CrossRef] [PubMed]
- Rtimi, S.; Pulgarin, C.; Sanjines, R.; Kiwi, J. Kinetics and mechanism for transparent polyethylene-TiO2 films mediated self-cleaning leading to MB dye discoloration under sunlight irradiation. Appl. Catal. B Environ. 2015, 162, 236–244. [Google Scholar] [CrossRef]
- Kadirova, Z.C.; Hojamberdiev, M.; Katsumata, K.I.; Isobe, T.; Matsushita, N.; Nakajima, A.; Okada, K. Photodegradation of gaseous acetaldehyde and methylene blue in aqueous solution with titanium dioxide-loaded activated carbon fiber polymer materials and aquatic plant ecotoxicity tests. Environ. Sci. Pollut. Res. 2014, 21, 4309–4319. [Google Scholar] [CrossRef]
Sample ID | 2 days | 7 days | 28 days | 90 days | Improvement (%) | ||
Compressive strength (MPa) | OPC | 26.09 | 45.43 | 56.00 | 55.91 | ||
WR01 | 29.51 | 43.47 | 52.12 | 55.68 | −0.4% | ||
WR02 | 29.11 | 42.08 | 52.94 | 57.92 | 3.6% | ||
WR05 | 28.04 | 44.88 | 49.36 | 54.71 | −2.1% | ||
WR1 | 27.00 | 41.16 | 49.98 | 55.38 | −0.9% | ||
NR01 | 29.75 | 45.51 | 53.94 | 55.18 | −1.3% | ||
NR02 | 27.50 | 41.84 | 51.27 | 61.24 | 9.5% | ||
NR05 | 29.43 | 42.40 | 55.56 | 61.59 | 10.2% | ||
NR1 | 28.54 | 42.78 | 53.24 | 62.26 | 11.4% | ||
Sample ID | 2 days | 7 days | 28 days | 90 days | Improvement (%) | ||
Flexural strength (MPa) | OPC | 5.43 | 7.10 | 8.04 | 7.64 | ||
WR01 | 5.18 | 4.87 | 6.51 | 8.31 | 8.7% | ||
WR02 | 4.27 | 6.22 | 6.09 | 8.69 | 13.7% | ||
WR05 | 5.15 | 6.15 | 6.61 | 7.56 | −1.0% | ||
WR1 | 4.71 | 6.28 | 5.92 | 8.03 | 5.1% | ||
NR01 | 4.86 | 6.13 | 7.99 | 8.30 | 8.6% | ||
NR02 | 5.00 | 5.61 | 5.19 | 7.66 | 0.2% | ||
NR05 | 5.13 | 5.60 | 6.36 | 7.46 | −2.4% | ||
NR1 | 5.06 | 5.43 | 5.79 | 7.94 | 3.9% |
TiO2 sols | ||||||
Sample ID | Annealing Temperature °C | Heating (min) | Stabilization (min) | Cooling (min) | ||
Control | - | - | - | - | ||
100TiO2 | 100 | 60 | 10 | 8 | ||
200TiO2 | 200 | 140 | 2 | 8 | ||
300TiO2 | 300 | 220 | 2 | 8 | ||
400TiO2 | 400 | 300 | 2 | 8 | ||
nano-TiO2 mortar | ||||||
Mixture ID | Water (mL) | Cement (g) | Sand (g) | nano-TiO2 (g) | Curing (h) | Hydration (days) |
OPC | 225 | 450 | 1350 | 0 | 24 | 2, 7, 28, 90 |
NR01 | 225 | 450 | 1350 | 0.45 | 24 | 2, 7, 28, 90 |
NR02 | 225 | 450 | 1350 | 0.9 | 24 | 2, 7, 28, 90 |
NR05 | 225 | 450 | 1350 | 2.25 | 24 | 2, 7, 28, 90 |
NR1 | 225 | 450 | 1350 | 4.5 | 24 | 2, 7, 28, 90 |
WR01 | 225 | 449.55 | 1350 | 0.45 | 24 | 2, 7, 28, 90 |
WR02 | 225 | 449.1 | 1350 | 0.9 | 24 | 2, 7, 28, 90 |
WR05 | 225 | 447.75 | 1350 | 2.25 | 24 | 2, 7, 28, 90 |
WR1 | 225 | 445.5 | 1350 | 4.5 | 24 | 2, 7, 28, 90 |
Mixture ID | Water (mL) | Cement (g) | Sand (g) | nano-TiO2 (g) | Hydration (days) |
---|---|---|---|---|---|
Control | 225 | 450 | 1350 | 0 | 2 |
M01 | 225 | 450 | 1350 | 0.45 | 2 |
M02 | 225 | 450 | 1350 | 0.9 | 2 |
M05 | 225 | 450 | 1350 | 2.25 | 2 |
M1 | 225 | 450 | 1350 | 4.5 | 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerro-Prada, E.; García-Salgado, S.; Quijano, M.Á.; Varela, F. Controlled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites. Nanomaterials 2019, 9, 26. https://doi.org/10.3390/nano9010026
Cerro-Prada E, García-Salgado S, Quijano MÁ, Varela F. Controlled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites. Nanomaterials. 2019; 9(1):26. https://doi.org/10.3390/nano9010026
Chicago/Turabian StyleCerro-Prada, Elena, Sara García-Salgado, M. Ángeles Quijano, and Fernando Varela. 2019. "Controlled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites" Nanomaterials 9, no. 1: 26. https://doi.org/10.3390/nano9010026
APA StyleCerro-Prada, E., García-Salgado, S., Quijano, M. Á., & Varela, F. (2019). Controlled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites. Nanomaterials, 9(1), 26. https://doi.org/10.3390/nano9010026