Fano Resonance on Nanostructured Lithium Niobate for Highly Efficient and Tunable Second Harmonic Generation
Abstract
:1. Introduction
2. Design, Results, and Discussions
2.1. Linear Simulation
2.2. Nonlinear Simulation
2.3. Tunable Second Harmonic Generation
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shen, Y.R. The Principles of Nonlinear Optics; Wiley-Interscience: New York, NY, USA, 1984. [Google Scholar]
- Li, Z.; Liu, W.; Li, Z.; Cheng, H.; Chen, S.; Tian, J. Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation. Opt. Lett. 2017, 42, 3117–3120. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.A.; England, D.G.; MacLean, J.P.; Bustard, P.J.; Resch, K.J.; Sussman, B.J. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Nat. Commun. 2016, 7, 11200. [Google Scholar] [CrossRef] [Green Version]
- Psilodimitrakopoulos, S.; Mouchliadis, L.; Paradisanos, I.; Lemonis, A.; Kioseoglou, G.; Stratakis, E. Ultrahigh-resolution nonlinear optical imaging of the armchair orientation in 2D transition metal dichalcogenides. Light Sci. Appl. 2018, 7, 18005. [Google Scholar] [CrossRef] [Green Version]
- Bautista, G.; Huttunen, M.J.; Makitalo, J.; Kontio, J.M.; Simonen, J.; Kauranen, M. Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams. Nano Lett. 2012, 12, 3207–3212. [Google Scholar] [CrossRef] [PubMed]
- Son, S.N.; Song, J.J.; Kang, J.U.; Kim, C.S. Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing. Sensors 2011, 11, 6125–6130. [Google Scholar] [CrossRef] [PubMed]
- Ndao, A.; Salut, R.; Suarez, M.; Baida, F.I. Plasmonless polarization-selective metasurfaces in the visible range. J. Opt. 2018, 20, 045003. [Google Scholar] [CrossRef] [Green Version]
- Grinblat, G.; Rahmani, M.; Cortes, E.; Caldarola, M.; Comedi, D.; Maier, S.A.; Bragas, A.V. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. Nano Lett. 2014, 14, 6660–6665. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Q.; Chong, W.K.; Yip, J.N.; Wen, X.; Li, Z.; Wei, F.; Yu, G.; Xiong, Q.; Sum, T.C. Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure. Nano Lett. 2015, 9, 5018–5026. [Google Scholar] [CrossRef]
- Vabishchevich, P.P.; Liu, S.; Sinclair, M.B.; Keeler, G.A.; Peake, G.M.; Brener, I. Enhanced Second-Harmonic Generation Using Broken Symmetry III–V Semiconductor Fano Metasurfaces. ACS Photonics 2018, 5, 1685–1690. [Google Scholar] [CrossRef]
- Bernasconi, G.D.; Butet, J.; Martin, O.J.F. Dynamics of Second-Harmonic Generation in a Plasmonic Silver Nanorod. ACS Photonics 2018, 5, 3246–3254. [Google Scholar] [CrossRef]
- Davidson, R.B.; Yanchenko, A.; Ziegler, J.I.; Avanesyan, S.M.; Lawrie, B.J.; Haglund, R.F. Ultrafast Plasmonic Control of Second Harmonic Generation. ACS Photonics 2016, 3, 1477–1481. [Google Scholar] [CrossRef] [Green Version]
- Harutyunyan, H.; Martinson, A.B.; Rosenmann, D.; Khorashad, L.K.; Besteiro, L.V.; Govorov, A.O.; Wiederrecht, G.P. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 2015, 10, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Bar-Lev, D.; Scheuer, J. Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays. Opt. Express 2013, 21, 29165–29178. [Google Scholar] [CrossRef] [PubMed]
- Löchner, F.J.F.; Fedotova, A.N.; Liu, S.; Keeler, G.A.; Peake, G.M.; Saravi, S.; Shcherbakov, M.R.; Burger, S.; Fedyanin, A.A.; Brener, I.; et al. Polarization-Dependent Second Harmonic Diffraction from Resonant GaAs Metasurfaces. ACS Photonics 2018, 5, 1786–1793. [Google Scholar] [CrossRef]
- Luo, R.; He, Y.; Liang, H.; Li, M.; Lin, Q. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 2018, 5, 1006–1011. [Google Scholar] [CrossRef]
- Cai, L.; Gorbach, A.V.; Wang, Y.; Hu, H.; Ding, W. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides. Sci. Rep. 2018, 8, 12478. [Google Scholar] [CrossRef] [PubMed]
- Bostani, A.; Tehranchi, A.; Kashyap, R. Super-tunable, broadband up-conversion of a high-power CW laser in an engineered nonlinear crystal. Sci. Rep. 2017, 7, 883. [Google Scholar] [CrossRef]
- Roussey, M.; Bernal, M.P.; Courjal, N.; van Labeke, D.; Baida, F.I.; Salut, R. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett. 2006, 89, 241110. [Google Scholar] [CrossRef]
- Qiu, W.; Ndao, A.; Lu, H.; Bernal, M.P.; Baida, F.I. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis. Opt. Express 2016, 24, 20196–20209. [Google Scholar] [CrossRef]
- Baghban, M.A.; Gallo, K. Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars. APL Photonics 2016, 1, 061302. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Bernal, M.P.; Ndao, A.; Guyot, C.; Hameed, N.M.; Courjal, N.; Maillotte, H.; Baida, F.I. Analysis of ultra-compact waveguide modes in thin film lithium niobite. Appl. Phys. B 2015, 118, 261–267. [Google Scholar] [CrossRef]
- Sergeyev, A.; Geiss, R.; Solntsev, A.S.; Steinbruck, A.; Schrempel, F.; Kley, E.B.; Pertsch, T.; Grange, R. Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation. Opt. Express 2013, 21, 19012–19021. [Google Scholar] [CrossRef] [PubMed]
- Diziain, S.; Geiss, R.; Zilk, M.; Schrempel, F.; Kley, E.-B.; Tünnermann, A.; Pertsch, T. Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity. Appl. Phys. Lett. 2013, 103, 051117. [Google Scholar] [CrossRef]
- Cai, L.; Han, H.; Zhang, S.; Hu, H.; Wang, K. Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator. Opt. Lett. 2014, 39, 2094–2096. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wang, Y.; Hu, H. Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film. Opt. Commun. 2017, 387, 405–408. [Google Scholar] [CrossRef]
- Bera, A.; Kuittinen, M.; Honkanen, S.; Roussey, M. Silicon slot waveguide Fano resonator. Opt. Lett. 2018, 43, 3489–3492. [Google Scholar] [CrossRef]
- Li, G.; Zhang, S.; Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2017, 2, 17010. [Google Scholar] [CrossRef]
- Rao, A.; Fathpour, S. Heterogeneous Thin-Film Lithium Niobate Integrated Photonics for Electro optics and Nonlinear Optics. IEEE J. Sel. Top. Quantum Electron. 2018, 24. [Google Scholar] [CrossRef]
- Campione, S.; Liu, S.; Basilio, L.I.; Warne, L.K.; Langston, W.L.; Luk, T.S.; Wendt, J.R.; Reno, J.L.; Keeler, G.A.; Brener, I.; et al. Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces. ACS Photonics 2016, 3, 2362–2367. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 5753. [Google Scholar] [CrossRef] [Green Version]
- Boyd, R. Nonlinear Optics; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Lehr, D.; Reinhold, J.; Thiele, I.; Hartung, H.; Dietrich, K.; Menzel, C.; Pertsch, T.; Kley, E.B.; Tunnermann, A. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobite. Nano Lett. 2015, 15, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Campione, S.; Benz, A.; Sinclair, M.B.; Capolino, F.; Brener, I. Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells. Appl. Phys. Lett. 2014, 104, 131104. [Google Scholar] [CrossRef]
- Liu, S.; Sinclair, M.B.; Saravi, S.; Keeler, G.A.; Yang, Y.; Reno, J.; Peake, G.M.; Setzpfandt, F.; Staude, I.; Pertsch, T.; et al. Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces. Nano Lett. 2016, 16, 5426–5432. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Sadani, B.; Ulliac, G.; Courjal, N.; Guyot, C.; Merolla, J.-M.; Collet, M.; Baida, F.I.; Bernal, M.-P. 6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity, Opt. Express 2012, 20, 20884–20893. [Google Scholar] [CrossRef] [PubMed]
Structure | Material | SH Enhancement | SH Conversion Efficiency | Reference |
---|---|---|---|---|
Broken symmetry Fano metasurfaces | GaAs/AlGaAs | NA | ~6 × 10−5 | [10] |
Fano metasurfaces | GaAs | NA | ~2 × 10−5 | [35] |
Fano-resonance-based mode-matching hybrid metasurface | ZnS/Au | NA | ~5.55 × 10−8 | [2] |
plasmonic-semiconductor hybrid nanosystem | ZnO/Au | ~1700 | 3 × 10−5 | [8] |
Nanobelt-hybrid plasmonic structure | CdS | ~1000 | 2 × 10−6 | [9] |
Gold nanoring resonators filled with lithium niobate | LiNbO3/Au | ~20 | NA | [33] |
lithium niobate photonic crystal L3 cavity | LiNbO3 | NA | 6.4 × 10−9 | [24] |
Nanostructured lithium niobate | LiNbO3 | ~1011 | 3.165 × 10−4 | This paper |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Lu, H.; Xiong, H.; Li, Y.; Chen, H.; Qiu, W.; Guan, H.; Dong, J.; Zhu, W.; Yu, J.; et al. Fano Resonance on Nanostructured Lithium Niobate for Highly Efficient and Tunable Second Harmonic Generation. Nanomaterials 2019, 9, 69. https://doi.org/10.3390/nano9010069
Huang Z, Lu H, Xiong H, Li Y, Chen H, Qiu W, Guan H, Dong J, Zhu W, Yu J, et al. Fano Resonance on Nanostructured Lithium Niobate for Highly Efficient and Tunable Second Harmonic Generation. Nanomaterials. 2019; 9(1):69. https://doi.org/10.3390/nano9010069
Chicago/Turabian StyleHuang, Zhijin, Huihui Lu, Hanqing Xiong, Yang Li, Huajiang Chen, Wentao Qiu, Heyuan Guan, Jiangli Dong, Wenguo Zhu, Jianhui Yu, and et al. 2019. "Fano Resonance on Nanostructured Lithium Niobate for Highly Efficient and Tunable Second Harmonic Generation" Nanomaterials 9, no. 1: 69. https://doi.org/10.3390/nano9010069
APA StyleHuang, Z., Lu, H., Xiong, H., Li, Y., Chen, H., Qiu, W., Guan, H., Dong, J., Zhu, W., Yu, J., Luo, Y., Zhang, J., & Chen, Z. (2019). Fano Resonance on Nanostructured Lithium Niobate for Highly Efficient and Tunable Second Harmonic Generation. Nanomaterials, 9(1), 69. https://doi.org/10.3390/nano9010069