Discharge Regimes Transition and Characteristics Evolution of Nanosecond Pulsed Dielectric Barrier Discharge
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Dynamics Evolution of the Discharge
3.2. Optical Emission Spectra of Nanosecond Pulsed Dielectric Barrier Discharge (NPDBD)
3.3. Time and Space Distribution of Vibrational Population of N2 (C3Πu, v = 0,1,2)
3.4. Calculation of Reduced Electric Field in NPDBD
3.5. Temporal Evolution of Reduced Electric Field E/N
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pai, D.Z.; Lacoste, D.A.; Laux, C.O. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure. J. Appl. Phys. 2010, 107, 093303. [Google Scholar] [CrossRef]
- Ito, T.; Kobayashi, K.; Czarnetzki, U.; Hamaguchi, S. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges. J. Phys. D Appl. Phys. 2010, 43, 062001. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, D.; Wang, W.; Wang, S.; Yuan, H.; Zhao, Z.; Sang, C.; Jia, L. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality. Sci. Rep. 2016, 6, 25242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosarev, I.N.; Khorunzhenko, V.I.; Mintoussov, E.I.; Sagulenko, P.N.; Popov, N.A.; Starikovskaia, S.M. A nanosecond surface dielectric barrier discharge at elevated pressures: Time-resolved electric field and efficiency of initiation of combustion. Plasma Sources Sci. Technol. 2012, 21, 45012. [Google Scholar] [CrossRef]
- Blin-Simiand, N.; Pasquiers, S.; Jorand, F.; Postel, C.; Vacher, J.R. Removal of formaldehyde in nitrogen and in dry air by a DBD: Importance of temperature and role of nitrogen metastable states. J. Phys. D Appl. Phys. 2009, 42, 122003. [Google Scholar] [CrossRef]
- Wang, S.; Yang, D.Z.; Wang, W.C.; Zhang, S.; Liu, Z.J.; Tang, K.; Song, Y. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization. Appl. Phys. Lett. 2013, 103, 2011–2015. [Google Scholar] [CrossRef]
- Bubnov, A.G.; Grinevich, V.I.; Kuvykin, N.A.; Maslova, O.N. The Kinetics of Plasma-Induced Degradation of Organic Pollutants in Sewage Water. High Energy Chem. 2004, 38, 41–45. [Google Scholar] [CrossRef]
- Miron, C.; Hulubei, C.; Sava, I.; Quade, A.; Steuer, A.; Weltmann, K.; Kolb, J.F. Polyimide Film Surface Modification by Nanosecond High Voltage Pulse Driven Electrical Discharges in Water. Plasma Process. Polym. 2015, 12, 734–745. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, W.; Yang, D.; Zhou, X.; Zhao, Z.; Zhang, L.; Wang, S.; Feng, J. Hydrophilicity modification of aramid fiber using a linear shape plasma excited by nanosecond pulse. Surf. Coat. Technol. 2018, 344, 614–620. [Google Scholar] [CrossRef]
- Pendleton, S.J.; Kastner, J.; Gutmark, E.; Gundersen, M.A. Surface Streamer Discharge for Plasma Flow Control Using Nanosecond Pulsed Power. IEEE Trans. Plasma Sci. 2011, 39, 2072–2073. [Google Scholar] [CrossRef]
- Gherardi, M.; Turrini, E.; Laurita, R.; Gianni, E.D.; Ferruzzi, L.; Liguori, A.; Stancampiano, A.; Colombo, V.; Fimognari, A. Atmospheric Non-Equilibrium Plasma Promotes Cell Death and Cell-Cycle Arrest in a Lymphoma Cell Line. Plasma Process. Polym. 2016, 12, 1354–1363. [Google Scholar] [CrossRef]
- Lu, P.; Kim, D.W.; Park, D.W. Silver nanoparticle-loaded filter paper: Innovative assembly method by nonthermal plasma and facile application for the reduction of methylene blue. Surf. Coat. Technol. 2019, 366, 7–14. [Google Scholar] [CrossRef]
- Sun, D.L.; Hong, R.Y.; Wang, F.; Liu, J.Y.; Rajesh Kumar, M. Synthesis and modification of carbon nanomaterials via AC arc and dielectric barrier discharge plasma. Chem. Eng. J. 2016, 283, 9–20. [Google Scholar] [CrossRef]
- Wang, L.; Yi, Y.H.; Guo, H.C.; Du, X.M.; Zhu, B.; Zhu, Y.M. Highly dispersed co nanoparticles prepared by an improved method for plasma-driven NH 3 decomposition to produce H 2. Catalysts 2019, 9, 1–13. [Google Scholar]
- Yang, D.Z.; Yang, Y.; Li, S.Z.; Nie, D.X.; Zhang, S.; Wang, W.C. A homogeneous dielectric barrier discharge plasma excited by a bipolar nanosecond pulse in nitrogen and air. Plasma Sources Sci. Technol. 2012, 21, 035004. [Google Scholar] [CrossRef]
- Tarasenko, V.F. Nanosecond discharge in air at atmospheric pressure as an X-ray source with high pulse repetition rates. Appl. Phys. Lett. 2006, 88, 601. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Kindysheva, S.V.; Nudnova, M.M.; Starikovskiy, A.Y. Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields. J. Phys. D Appl. Phys. 2010, 43, 255201. [Google Scholar] [CrossRef]
- Tarasenko, V.F.; Baksht, E.K.; Burahenko, A.G.; Shut’ko, Y.V. Diffuse discharge, runaway electron, and X-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes. Appl. Phys. Lett. 2011, 98, 021503. [Google Scholar] [CrossRef]
- Anikin, N.B.; Zavialova, N.A.; Starikovskaia, S.M.; Starikovskii, A.Y. Nanosecond-Discharge Development in Long Tubes. IEEE Trans. Plasma Sci. 2008, 36, 902–903. [Google Scholar] [CrossRef]
- Yatom, S.; Shlapakovski, A.; Beilin, L.; Stambulchik, E.; Tskhai, S.; Krasik, Y.E. Recent studies on nanosecond-timescale pressurized gas discharges. Plasma Sources Sci. Technol. 2016, 25, 064001. [Google Scholar] [CrossRef]
- Yan, K.; Li, R.; Zhu, T.; Zhang, H.; Hu, X.; Jiang, X.; Liang, H.; Qiu, R.; Wang, Y. A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale. Chem. Eng. J. 2006, 116, 139–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Jiang, W.; Bogaerts, A. Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New. J. Phys. 2015, 17, 083056. [Google Scholar] [CrossRef] [Green Version]
- Shao, T.; Tarasenko, V.F.; Zhang, C.; Lomaev, M.I.; Sorokin, D.A.; Yan, P.; Kozyrev, A.V.; Baksht, E.K. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation. J. Appl. Phys. 2012, 111, 023304. [Google Scholar]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K. Guided ionization waves: Theory and experiments. Phys. Rep. 2014, 540, 123–166. [Google Scholar] [CrossRef]
- Raizer, Y.P. Gas. Discharge Physics; Springer-Verlag: Berlin, Germany, 1991. [Google Scholar]
- Pai, D.Z.; Lacoste, D.A.; Laux, C.O. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime. Plasma Sources Sci. Technol. 2010, 19, 065015. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Liu, F.; Zheng, W.; Wang, D. Optical study of OH radical in a wire-plate pulsed corona discharge. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 477–482. [Google Scholar] [CrossRef]
- Babich, L.P.; Loĭko, T.V.; Tsukerman, V.A. High-voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electrons. Sov. Phys. Uspekhi 1990, 33, 521–540. [Google Scholar] [CrossRef]
- Levko, D.; Yatom, S.; Vekselman, V.; Gleizer, J.Z.; Gurovich, V.T.; Krasik, Y.E. Numerical simulations of runaway electron generation in pressurized gases. J. Appl. Phys. 2012, 111, R265. [Google Scholar] [CrossRef]
- Lo, A.; Cessou, A.; Lacour, C.; Lecordier, B.; Boubert, P.; Xu, D.A.; Laux, C.O.; Vervisch, P. Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air. Plasma Sources Sci. Technol. 2017, 26, 045012. [Google Scholar] [CrossRef]
- Stepanyan, S.A.; Starikovskiy, A.Y.; Popov, N.A.; Starikovskaia, S.M. A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: Transition to filamentary mode. Plasma Sources Sci. Technol. 2017, 23, 045003. [Google Scholar] [CrossRef]
- Shcherbanev, S.A.; Khomenko, A.Y.; Stepanyan, S.A.; Popov, N.A.; Starikovskaia, S.M. Optical emission spectrum of filamentary nanosecond surface dielectric barrier discharge. Plasma Sources Sci. Technol. 2017, 26, 02LT01. [Google Scholar] [CrossRef]
- Pai, D.Z.; Stancu, G.D.; Lacoste, D.A.; Laux, C.O. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the glow regime. Plasma Sources Sci. Technol. 2009, 18, 045030. [Google Scholar] [CrossRef]
- Ito, T.; Kanazawa, T.; Hamaguchi, S. Rapid Breakdown Mechanisms of Open Air Nanosecond Dielectric Barrier Discharges. Phys. Rev. Lett. 2011, 107, 065002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Jiang, N.; Shang, K.F.; Lu, N.; Wu, Y. Optical characteristics of the filamentary and diffuse modes in surface dielectric barrier discharge. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 168, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Paris, P.; Aints, M.; Valk, F.; Plank, T.; Haljaste, A.; Kozlov, K.V.; Wagner, H.E. REPLY: Reply to comments on “Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas”. J. Phys. D Appl. Phys. 2006, 38, 3894–3899. [Google Scholar] [CrossRef]
- Pancheshnyi, S.V.; Starikovskaia, S.M.; Starikovskii, A.Y. Collisional deactivation of N2(C3Π u, v = 0, 1, 2, 3) states by N2, O2, H2 and H2O molecules. Chem. Phys. 2000, 262, 349–357. [Google Scholar] [CrossRef]
- Shao, T.; Long, K.; Zhang, C.; Yan, P.; Zhang, S.; Pan, R. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. J. Phys. D Appl. Phys. 2008, 41, 215203. [Google Scholar]
- Liu, S.H.; Neiger, M. Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses. J. Phys. D Appl. Phys. 2001, 34, 1632–1638. [Google Scholar] [CrossRef]
- Wu, S.; Lu, X.; Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K. Photo-ionization and residual electron effects in guided streamers. Phys. Plasmas 2014, 21, 103508. [Google Scholar] [CrossRef]
- Nijdam, S.; Geurts, C.G.C.; Van Veldhuizen, E.M.; Ebert, U. Reconnection and merging of positive streamers in air. J. Phys. D Appl. Phys. 2009, 42, 045201. [Google Scholar] [CrossRef]
- Nijdam, S.; Takahashi, E.; Teunissen, J.; Ebert, U. Streamer discharges can move perpendicularly to the electric field. New. J. Phys. 2014, 16, 103038. [Google Scholar] [CrossRef]
- Shkurenkov, I.; Adamovich, I.V. Energy balance in nanosecond pulse discharges in nitrogen and air. Plasma Sources Sci. Technol. 2016, 25, 015021. [Google Scholar] [CrossRef]
- Shkurenkov, I.; Burnette, D.; Lempert, W.R.; Adamovich, I.V. Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air. Plasma Sources Sci. Technol. 2014, 23, 065003. [Google Scholar] [CrossRef]
- Suchard, S.N.; Melzer, J.E. (Eds.) Spectroscopic Data; Springer: New York, NY, USA, 1976. [Google Scholar]
- Zhang, S.; Wang, W.; Jia, L.; Liu, Z.; Yang, Y.; Dai, L. Rotational, Vibrational, and Excitation Temperatures in Bipolar Nanosecond-Pulsed Diffuse Dielectric-Barrier-Discharge Plasma at Atmospheric Pressure. IEEE Trans. Plasma Sci. 2013, 41, 350–354. [Google Scholar] [CrossRef]
- Hagelaar, G.J.M.; Pitchford, L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005, 14, 722–733. [Google Scholar] [CrossRef]
- Liu, C.; Dobrynin, D.; Fridman, A. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: Fast imaging and spectroscopic measurements of electric field. J. Phys. D Appl. Phys. 2014, 47, 252003. [Google Scholar] [CrossRef] [PubMed]
v” | v’ = 0 | v’ = 1 | v’ = 2 | v’ = 4 | v’ = 5 |
---|---|---|---|---|---|
0 | 4.55 × 10−1 | 3.88 × 10−1 | 1.34 × 10−1 | 2.16 × 10−2 | 1.16 × 10−3 |
1 | 3.31 × 10−1 | 2.92 × 10−2 | 3.35 × 10−1 | 2.52 × 10−1 | 5.66 × 10−2 |
2 | 1.45 × 10−1 | 2.12 × 10−1 | 2.30 × 10−2 | 2.04 × 10−1 | 3.26 × 10−1 |
3 | 4.94 × 10−2 | 2.02 × 10−1 | 6.91 × 10−2 | 8.81 × 10−2 | 1.13 × 10−1 |
4 | 1.45 × 10−2 | 1.09 × 10−1 | 1.69 × 10−1 | 6.56 × 10−3 | 1.16 × 10−1 |
5 | 3.87 × 10−3 | 4.43 × 10−2 | 1.41 × 10−1 | 1.02 × 10−1 | 2.45 × 10−3 |
6 | 9.68 × 10−4 | 1.52 × 10−2 | 7.72 × 10−2 | 1.37 × 10−1 | 4.70 × 10−2 |
N2 (C3Πu, v = 0) | N2 (C3Πu, v = 1) | N2 (C3Πu, v = 2) | N2 (C3Πu, v = 3) | ||
---|---|---|---|---|---|
τ (ns) [37] | 42 | 41 | 39 | 41 | 62 |
Av’v” | 0.05 (0–3) | 0.11 (1–4) | 0.14 (2–5) | 0.14 (3–6) | 0.72 (0–0) |
kq,N2 (10−10 cm3·s−1) | 0.13 | 0.29 | 0.46 | 0.43 | 2.1 |
kq,N2 (10−10 cm3·s−1) | 3.0 | 3.1 | 3.7 | 4.3 | 5.1 |
kconv, (10−29 cm3·s−1) | - | - | - | - | 5.0 |
g | 0.012 | 1.0 × 10−2 | 8.3 × 10−3 | 7.3 × 10−3 | 2.2 × 10−3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yang, D.; Wang, S.; Jia, Z.; Yuan, H.; Zhao, Z.; Wang, W. Discharge Regimes Transition and Characteristics Evolution of Nanosecond Pulsed Dielectric Barrier Discharge. Nanomaterials 2019, 9, 1381. https://doi.org/10.3390/nano9101381
Zhang L, Yang D, Wang S, Jia Z, Yuan H, Zhao Z, Wang W. Discharge Regimes Transition and Characteristics Evolution of Nanosecond Pulsed Dielectric Barrier Discharge. Nanomaterials. 2019; 9(10):1381. https://doi.org/10.3390/nano9101381
Chicago/Turabian StyleZhang, Li, Dezheng Yang, Sen Wang, Zixian Jia, Hao Yuan, Zilu Zhao, and Wenchun Wang. 2019. "Discharge Regimes Transition and Characteristics Evolution of Nanosecond Pulsed Dielectric Barrier Discharge" Nanomaterials 9, no. 10: 1381. https://doi.org/10.3390/nano9101381
APA StyleZhang, L., Yang, D., Wang, S., Jia, Z., Yuan, H., Zhao, Z., & Wang, W. (2019). Discharge Regimes Transition and Characteristics Evolution of Nanosecond Pulsed Dielectric Barrier Discharge. Nanomaterials, 9(10), 1381. https://doi.org/10.3390/nano9101381