A Simple Method for Anchoring Silver and Copper Nanoparticles on Single Wall Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Purification of the SWCNT
2.2. Functionalization of Pristine and Purified SWCNT
2.3. Decoration of SWCNT with Metal Salts
2.4. Characterization of the SWCNT
2.4.1. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy
2.4.2. Thermogravimetric Analysis
2.4.3. X-ray Photoelectron Spectroscopy
2.4.4. Raman Spectroscopy
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. Functionalization of the SWCNT
3.3. Single Walled Carbon Nanotube Structure and Functionalization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, J.P. Elastic properties of single and multilayered nanotubes. J. Phys. Chem. Solids 1997, 58, 1649–1652. [Google Scholar] [CrossRef]
- Yu, M.-F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties. Phys. Rev. Lett. 2000, 84, 5552–5555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hone, J.; Llaguno, M.; Biercuk, M.; Johnson, A.; Batlogg, B.; Benes, Z.; Fischer, J. Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A 2002, 74, 339–343. [Google Scholar] [CrossRef]
- Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006, 6, 96–100. [Google Scholar] [CrossRef]
- Berber, S.; Kwon, Y.-K.; Tománek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef] [Green Version]
- Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56. [Google Scholar] [CrossRef]
- Suzuki, S.; Bower, C.; Watanabe, Y.; Zhou, O. Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl. Phys. Lett. 2000, 76, 4007–4009. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, K.; Nakato, Y.; Murakoshi, K. Absolute potential of the Fermi level of isolated single-walled carbon nanotubes. Phys. Rev. B 2003, 68, 035434. [Google Scholar] [CrossRef]
- Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246. [Google Scholar] [CrossRef]
- Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657. [Google Scholar] [CrossRef]
- Wildoer, J.W.G.; Venema, L.C.; Rinzler, A.G.; Smalley, R.E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, X.; Nagase, S. 1,3-Dipolar cycloadditions of Stone–Wales defective single-walled carbon nanotubes: A theoretical study. J. Comput. Chem. 2013, 34, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.; Brenner, D.W.; Schall, J.D.; Ausman, K.D.; Yu, M.; Ruoff, R.S. Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes: Kinky Chemistry. J. Phys. Chem. B 1999, 103, 4330–4337. [Google Scholar] [CrossRef]
- Karousis, N.; Tagmatarchis, N.; Tasis, D. Current Progress on the Chemical Modification of Carbon Nanotubes. Chem. Rev. 2010, 110, 5366–5397. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Burghard, M. Chemically Functionalized Carbon Nanotubes. Small 2005, 1, 180–192. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tagmatarchis, N.; Pantarotto, D.; Bianco, A.; Briand, J.-P.; Prato, M. Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 2002, 3050–3051. [Google Scholar] [CrossRef]
- Kordatos, K.; Da Ros, T.; Bosi, S.; Vázquez, E.; Bergamin, M.; Cusan, C.; Pellarini, F.; Tomberli, V.; Baiti, B.; Pantarotto, D.; et al. Novel versatile fullerene synthons. J. Org. Chem. 2001, 66, 4915–4920. [Google Scholar] [CrossRef]
- Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D.M.; Holzinger, M.; Hirsch, A. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 760–761. [Google Scholar] [CrossRef]
- Gonzalez-Dominguez, J.M.; Gonzalez, M.; Ansón-Casaos, A.; Díez-Pascual, A.M.; Gomez, M.A.; Martínez, M.T. Effect of Various Aminated Single-Walled Carbon Nanotubes on the Epoxy Cross-Linking Reactions. J. Phys. Chem. C 2011, 115, 7238–7248. [Google Scholar] [CrossRef]
- Mulvey, J.J.; Feinberg, E.N.; Alidori, S.; McDevitt, M.R.; Heller, D.A.; Scheinberg, D.A. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes. Int. J. Nanomed. 2014, 9, 4245–4255. [Google Scholar]
- García, A.; Herrero, M.A.; Frein, S.; Deschenaux, R.; Munoz, R.; Bustero, I.; Toma, F.; Prato, M. Synthesis of dendrimer-carbon nanotube conjugates. Phys. Status Solidi A Appl. Mater. Sci. 2008, 205, 1402–1407. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Braidy, N.; Botton, G.A.; Adronov, A. Polymerization from the surface of single-walled carbon nanotubes—Preparation and characterization of nanocomposites. J. Am. Chem. Soc. 2003, 125, 16015–16024. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Iqbal, Z.; Mitra, S. Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 2005, 43, 1015–1020. [Google Scholar] [CrossRef]
- Tagmatarchis, N.; Prato, M.; Guldi, D.M. Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Phys. E Low Dimens. Syst. Nanostruct. 2005, 29, 546–550. [Google Scholar] [CrossRef]
- Ondera, T.J.; Hamme, A.T. A gold nanopopcorn attached single-walled carbon nanotube hybrid for rapid detection and killing of bacteria. J. Mater. Chem. B 2014, 2, 7534–7543. [Google Scholar] [CrossRef] [Green Version]
- Gaudino, E.C.; Tagliapietra, S.; Martina, K.; Barge, A.; Lolli, M.; Terreno, E.; Lembo, D.; Cravotto, G. A novel SWCNT platform bearing DOTA and beta-cyclodextrin units. “One shot” multidecoration under microwave irradiation. Org. Biomol. Chem. 2014, 12, 4708–4715. [Google Scholar] [CrossRef]
- Paiva, M.C.; Novais, R.M.; Araujo, R.F.; Pederson, K.K.; Proenca, M.F.; Silva, C.J.R.; Costa, C.M.; Lanceros-Mendez, S. Organic Functionalization of Carbon Nanofibers for Composite Applications. Polym. Compos. 2010, 31, 369–376. [Google Scholar] [CrossRef]
- Paiva, M.C.; Simon, F.; Novais, R.M.; Ferreira, T.; Proença, M.F.; Xu, W.; Besenbacher, F. Controlled Functionalization of Carbon Nanotubes by a Solvent-free Multicomponent Approach. ACS Nano 2010, 4, 7379–7386. [Google Scholar] [CrossRef]
- Sahoo, S.; Husale, S.; Karna, S.; Nayak, S.K.; Ajayan, P.M. Controlled Assembly of Ag Nanoparticles and Carbon Nanotube Hybrid Structures for Biosensing. J. Am. Chem. Soc. 2011, 133, 4005–4009. [Google Scholar] [CrossRef]
- Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries. J. Power Sources 2010, 195, 4350–4355. [Google Scholar] [CrossRef]
- Cvetićanin, J.; Krkljes, A.; Kačarević-Popović, Z.; Mitrić, M.; Rakočević, Z.; Trpkov, D.; Nešković, O. Functionalization of carbon nanotubes with silver clusters. Appl. Surf. Sci. 2010, 256, 7048–7055. [Google Scholar] [CrossRef]
- Choi, S.K.; Chun, K.-Y.; Lee, S.-B. Selective decoration of silver nanoparticles on the defect sites of single-walled carbon nanotubes. Diam. Relat. Mater. 2009, 18, 637–641. [Google Scholar] [CrossRef]
- Paul, R.; Maity, A.; Mitra, A.; Kumbhakar, P.; Mitra, A.K. Synthesis and study of optical and electrical characteristics of a hybrid structure of single wall carbon nanotubes and silver nanoparticles. J. Nanopart. Res. 2011, 13, 5749–5757. [Google Scholar] [CrossRef]
- Lin, Y.; Watson, K.A.; Fallbach, M.J.; Ghose, S.; Smith, J.G.; DeLozier, D.M.; Cao, W.; Crooks, R.E.; Connell, J.W. Rapid, Solventless, Bulk Preparation of Metal Nanoparticle-Decorated Carbon Nanotubes. ACS Nano 2009, 3, 871–884. [Google Scholar] [CrossRef]
- Asad, M.; Sheikhi, M.H. Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles. Sens. Actuators B Chem. 2014, 198, 134–141. [Google Scholar] [CrossRef]
- Seo, S.M.; Kang, T.J.; Cheon, J.H.; Kim, Y.H.; Park, Y.J. Facile and scalable fabrication of chemiresistive sensor array for hydrogen detection based on gold-nanoparticle decorated SWCNT network. Sens. Actuators B Chem. 2014, 204, 716–722. [Google Scholar] [CrossRef]
- Pastoriza-Santos, I.; Liz-Marzán, L.M. Formation and Stabilization of Silver Nanoparticles through Reduction by N,N-Dimethylformamide. Langmuir 1999, 15, 948–951. [Google Scholar] [CrossRef]
- Alimohammadi, F.; Gashti, M.P.; Shamei, A.; Kiumarsi, A. Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: Evaluation of surface, thermal and optical properties. Superlattices Microstruct. 2012, 52, 50–62. [Google Scholar] [CrossRef]
- Ma, P.C.; Tang, B.Z.; Kim, J.-K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 2008, 46, 1497–1505. [Google Scholar] [CrossRef]
- Dutta, S.; Ray, C.; Sarkar, S.; Pradhan, M.; Negishi, Y.; Pal, T. Silver Nanoparticle Decorated Reduced Graphene Oxide (rGO) Nanosheet: A Platform for SERS Based Low-Level Detection of Uranyl Ion. ACS Appl. Mater. Interfaces 2013, 5, 8724–8732. [Google Scholar] [CrossRef] [PubMed]
- Chun, K.-Y.; Oh, Y.; Rho, J.; Ahn, J.-H.; Kim, Y.-J.; Choi, H.R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, E.; Ionescu, R.; Bittencourt, C.; Felten, A.; Erni, R.; Van Tendeloo, G.; Pireaux, J.-J.; Llobet, E. Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing. Thin Solid Films 2007, 515, 8322–8327. [Google Scholar] [CrossRef]
- Yuan, W.; Jiang, G.; Che, J.; Qi, X.; Xu, R.; Chang, M.W.; Chen, Y.; Lim, S.Y.; Dai, J.; Chan-Park, M.B. Deposition of Silver Nanoparticles on Multiwalled Carbon Nanotubes Grafted with Hyperbranched Poly(amidoamine) and Their Antimicrobial Effects. J. Phys. Chem. C 2008, 112, 18754–18759. [Google Scholar] [CrossRef]
- Tang, L.; Duan, F.; Chen, M. Silver nanoparticle decorated polyaniline/multiwalled super-short carbon nanotube nanocomposites for supercapacitor applications. RSC Adv. 2016, 6, 65012–65019. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Yang, Y.; Rinzan, M.B.M.; Boyd, A.K.; Barbara, P. Record Endurance for Single-Walled Carbon Nanotube–Based Memory Cell. Nanoscale Res. Lett. 2010, 5, 1852–1855. [Google Scholar] [CrossRef]
- Odintsov, A.A. Schottky Barriers in Carbon Nanotube Heterojunctions. Phys. Rev. Lett. 2000, 85, 150–153. [Google Scholar] [CrossRef] [Green Version]
- Tersoff, J. Nanotechnology—A barrier falls. Nature 2003, 424, 622–623. [Google Scholar] [CrossRef]
- McAndrew, C.F.; Baxendale, M. High electrical conductance enhancement in Au-nanoparticle decorated sparse single-wall carbon nanotube networks. Nanotechnology 2013, 24, 305202. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Young, R.J.; MacPherson, J.V.; Wilson, N.R. Single-Walled Carbon Nanotube Networks Decorated with Silver Nanoparticles: A Novel Graded SERS Substrate. J. Phys. Chem. C 2007, 111, 16167–16173. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Young, R.; MacPherson, J.V.; Wilson, N. Silver-decorated carbon nanotube networks as SERS substrates. J. Raman Spectrosc. 2011, 42, 1255–1262. [Google Scholar] [CrossRef]
- Wang, Y.H.; Shan, H.; Hauge, R.H.; Pasquali, M.; Smalley, R.E. A highly selective, one-pot purification method for single-walled carbon nanotubes. J. Phys. Chem. B 2007, 111, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Clancy, A.J.; White, E.R.; Tay, H.H.; Yau, H.C.; Shaffer, M.S. Systematic comparison of conventional and reductive single-walled carbon nanotube purifications. Carbon 2016, 108, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Moulder, J.F. Handbook of Photoelectron Spectroscopy; Physicical Electronics Division, Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Biesinger, M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
- Dresselhaus, M.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. Rev. Sect. Phys. Lett. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Hussain, S.; Jha, P.; Chouksey, A.; Raman, R.; Islam, S.; Choudhary, P. Spectroscopic Investigation of Modified Single Wall Carbon Nanotube (SWCNT). J. Mod. Phys. 2011, 2, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef]
Sample | SWCNT | SWCNT:Z-Gly-OH | Z-Gly-OH:PFA | Temperature (°C) | Reaction Time (h) |
---|---|---|---|---|---|
f-S1 1 | Pristine | 1:1 (wt) | 1:6 (mol) | 230 ± 10 | 2 |
f-S6 | Pristine | 1:6 (wt) | 230 ± 15 | ||
f-SP1 | Purified | 1:1 (wt) | 250 ± 13 |
In Nitrogen | ||||
Sample | 1st Derivative peak T (°C) | Weight loss (wt.%) @700 °C | Approx. residue from Cu or Ag anchoring | |
T1 | T2 | |||
S | - | - | 0.19 | - |
SP | - | - | 5.09 | - |
f-S6 | 200 | 409 | 22.04 | - |
f-SP1 | 240 | 345 | 14.74 | - |
f-S1 | 175 | 335 | 21.72 | - |
f-S1Cu | 203 | 367 | 16.95 | 4.8 |
f-S1Ag | 170 | 331 | 15.06 | 6.7 |
In Oxygen | ||||
1st Derivative peak T (°C) | Fe (wt.%) | Residual weight (wt.%) @800 °C | ||
T1 | T2 | |||
S | - | 592 | 13.7 | 19.64 |
SP | 269 | 614 | 10.9 | 15.53 |
f-S6 | 341 | 572 | 8.3 | 11.81 |
f-SP1 | 344 | 593 | 6.7 | 9.64 |
f-S1 | 338 | 578 | 10.0 | 14.35 |
f-S1Cu | 311 | 552 | ~10.0 | 17.5 |
f-S1Ag | 337 | 515 | ~10.0 | 17.7 |
N:C | N:Oorg | >NH:>NR | |
---|---|---|---|
f-SP1 | 0.02 | 2.36 | 1.05 |
f-S1 | 0.02 | 0.43 | 0.17 |
f-S1Ag | 0.02 | 0.34 | 0.19 |
f-S1Cu | 0.02 | 0.28 | 0.25 |
f-S6 | 0.05 | 0.89 | 0.25 |
Atomic % | ||||||
---|---|---|---|---|---|---|
C 1s | N 1s | (O 1s)org1 | Ag 3d | Cu 2p | Fe 2p | |
S | 97.79 | - | 1.30 | - | - | 0.64 |
SP | 96.55 | - | 3.2 | - | - | 0.25 |
f-SP1 | 94.78 | 1.57 | 0.67 | - | - | - |
f-S1 | 91.2 | 2.13 | 4.93 | - | - | 0.12 |
f-S1Ag | 90.36 | 1.67 | 4.90 | 0.09 | - | 0.11 |
f-S1Cu | 92.03 | 1.4 | 5.09 | - | 0.08 | 0.13 |
f-S6 | 88.32 | 4.52 | 5.08 | - | - | 0.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. Silva, M.; Ribeiro, D.; Cunha, E.; Proença, M.F.; Young, R.J.; Paiva, M.C. A Simple Method for Anchoring Silver and Copper Nanoparticles on Single Wall Carbon Nanotubes. Nanomaterials 2019, 9, 1416. https://doi.org/10.3390/nano9101416
M. Silva M, Ribeiro D, Cunha E, Proença MF, Young RJ, Paiva MC. A Simple Method for Anchoring Silver and Copper Nanoparticles on Single Wall Carbon Nanotubes. Nanomaterials. 2019; 9(10):1416. https://doi.org/10.3390/nano9101416
Chicago/Turabian StyleM. Silva, Mariana, Daniel Ribeiro, Eunice Cunha, M. Fernanda Proença, Robert J. Young, and Maria C. Paiva. 2019. "A Simple Method for Anchoring Silver and Copper Nanoparticles on Single Wall Carbon Nanotubes" Nanomaterials 9, no. 10: 1416. https://doi.org/10.3390/nano9101416
APA StyleM. Silva, M., Ribeiro, D., Cunha, E., Proença, M. F., Young, R. J., & Paiva, M. C. (2019). A Simple Method for Anchoring Silver and Copper Nanoparticles on Single Wall Carbon Nanotubes. Nanomaterials, 9(10), 1416. https://doi.org/10.3390/nano9101416