Effect of GO Additive in ZnO/rGO Nanocomposites with Enhanced Photosensitivity and Photocatalytic Activity
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Preparation of ZnO/rGO Nanocomposites
2.3. Characterization of ZnO/rGO Nanocomposite
2.4. UV Sensing Measurement
2.5. Evaluation of Photocatalytic Degradation
3. Results and Discussions
3.1. Structural Component, Surface Morphology, and Optical Properties
3.2. UV Sensing Measurement
3.3. Photocatalytic Activity Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Paliwal, A.; Sharma, A.; Tomar, M.; Gupta, V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sens. Actuators B Chem. 2017, 250, 679–685. [Google Scholar] [CrossRef]
- Hou, Y.; Jayatissa, A.H. Influence of laser doping on nanocrystalline ZnO thin films gas sensors. Prog. Nat. Sci. Mater. Int. 2017, 27, 435–442. [Google Scholar] [CrossRef]
- Latyshev, V.M.; Berestok, T.O.; Opanasyuk, A.; Kornyushchenko, A.; Perekrestov, V.I. Nanostructured ZnO films for potential use in LPG gas sensors. Solid State Sci. 2017, 67, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Ponhan, W.; Phadungdhitidhada, S.; Choopun, S. Fabrication of ethanol sensors based on ZnO thin film field-effect transistor prepared by thermal evaporation deposition. Mater. Today Proc. 2017, 4, 6342–6348. [Google Scholar] [CrossRef]
- da Fonseca, A.F.V.; Siqueira, R.L.; Landers, R.; Ferrari, J.L.; Marana, N.L.; Sambrano, J.R.; La Porta, F.D.A.; Schiavon, M.A. A theoretical and experimental investigation of Eu-doped ZnO nanorods and its application on dye sensitized solar cells. J. Alloys Compd. 2018, 739, 939–947. [Google Scholar] [CrossRef] [Green Version]
- Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications. Superlattices Microstruct. 2016, 98, 332–341. [Google Scholar] [CrossRef]
- Kaewyai, K.; Choopun, S.; Gardchareon, A.; Ruankham, P.; Phadungdhitidhada, S.; Wongratanaphisan, D. Effects of mixed-phase copper oxide nanofibers in ZnO dye-sensitized solar cells on efficiency enhancement. J. Nanosci. Nanotechnol. 2017, 17, 5475–5480. [Google Scholar] [CrossRef]
- Iqbal, T.; Aziz, A.; Khan, M.; Andleeb, S.; Mahmood, H.; Khan, A.A.; Khan, R.; Shafique, M. Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications. Mater. Sci. Eng. B 2018, 228, 153–159. [Google Scholar] [CrossRef]
- Voss, T.; Waldvogel, S.R. Hybrid LEDs based on ZnO nanowire structures. Mater. Sci. Semicond. Process. 2017, 69, 52–56. [Google Scholar] [CrossRef]
- Liu, M.; Li, K.; Kong, F.; Zhao, J.; Yue, Q.; Yu, X. Improvement of the light extraction efficiency of light-emitting diodes based on ZnO nanotubes. Photonics Nanostruct.-Fundam. Appl. 2015, 16, 9–15. [Google Scholar] [CrossRef]
- Zhu, G.; Yang, R.; Wang, S.; Wang, Z.L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Sakurai, M.; Aono, M. ZnO-based ultraviolet photodetectors. Sensors 2010, 10, 8604–8634. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Gayen, R.; Biswas, S.; Bhat, S.V.; Bhunia, R. Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RSC Adv. 2016, 6, 61661–61672. [Google Scholar] [CrossRef]
- Su, Y.; Xie, G.; Xie, T.; Long, Y.; Ye, Z.; Du, X.; Wu, Z.; Jiang, Y. Piezo-phototronic UV photosensing with ZnO nanowires array. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Tran, V.T.; Wei, Y.; Yang, H.; Zhan, Z.; Du, H. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device. Nanotechnology 2017, 28, 095204. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Pan, L.; Liu, X.; Lu, T.; Zhu, G.; Sun, Z. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 2011, 509, 10086–10091. [Google Scholar] [CrossRef]
- Jung, H.; Pham, T.T.; Shin, E.W. Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect. Appl. Surf. Sci. 2018, 458, 369–381. [Google Scholar] [CrossRef]
- He, J.; Niu, C.; Yang, C.; Wang, J.; Su, X. Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. RSC Adv. 2014, 4, 60253–60259. [Google Scholar] [CrossRef]
- Rodwihok, C.; Choopun, S.; Ruankham, P.; Gardchareon, A.; Phadungdhitidhada, S.; Wongratanaphisan, D. UV sensing properties of ZnO nanowires/nanorods. Appl. Surf. Sci. 2019, 477, 159–165. [Google Scholar] [CrossRef]
- Heinonen, S.; Nikkanen, J.P.; Huttunen-Saarivirta, E.; Levänen, E. Investigation of long-term chemical stability of structured ZnO films in aqueous solutions of varying conditions. Thin Solid Films 2017, 638, 410–419. [Google Scholar] [CrossRef]
- Kahouli, M.; Barhoumi, A.; Bouzid, A.; Al-Hajry, A.; Guermazi, S. Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattices Microstruct. 2015, 85, 7–23. [Google Scholar] [CrossRef]
- Bhatia, D.; Sharma, H.; Meena, R.; Palkar, V. A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sens. Bio-Sens. Res. 2016, 9, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Nour, E.; Nur, O.; Willander, M. Zinc oxide piezoelectric nano-generators for low frequency applications. Semicond. Sci. Technol. 2017, 32, 064005. [Google Scholar] [CrossRef]
- Wang, P.; Du, H. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Rev. Sci. Instrum. 2015, 86, 075002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.; Lu, J.; Wu, P.; Huang, J.; Wang, Q.; Lu, B.; Zhang, Y.; Zhao, B.; Ye, Z. Evolution of electrical performance of ZnO-based thin-film transistors by low temperature annealing. AIP Adv. 2012, 2, 022118. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Wu, W.; Ding, Y.; Wang, Z.L. Piezotronic Effect in Flexible Thin-film Based Devices. Adv. Mater. 2013, 25, 3371–3379. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Majumder, S.; Banerji, P. Role of oxygen vacancy in optical and gas sensing characteristics of ZnO thin films. J. Alloys Compd. 2012, 541, 376–379. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darling, S.B. Perspective: Interfacial materials at the interface of energy and water. J. Appl. Phys. 2018, 124, 030901. [Google Scholar] [CrossRef]
- Raizada, P.; Sudhaik, A.; Singh, P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Mater. Sci. Energy Technol. 2019, 2, 509–525. [Google Scholar] [CrossRef]
- Thepnurat, M.; Ruankham, P.; Phadunghitidhada, S.; Gardchareon, A.; Wongratanaphisan, D.; Choopun, S. Efficient charge-transport UV sensor based on interlinked ZnO tetrapod networks. Surf. Coat. Technol. 2016, 306, 25–29. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, K.; Tripathy, N.; Bose, G.; Kim, D.; Lee, T.; Myoung, J.; Kar, J. Ultraviolet photodetection characteristics of Zinc oxide thin films and nanostructures. IOP Conf. Ser. Mater. Sci. Eng. 2016, 115, 012035. [Google Scholar] [CrossRef]
- Humayun, Q.; Hashim, U.; Ruzaidi, C.; Foo, K.L. The Strategy to Control the Morphology of ZnO Nanostructure UV Sensor. IOP Conf. Ser. Mater. Sci. Eng. 2015, 99, 012017. [Google Scholar] [CrossRef]
- Lee, A.; Libera, J.A.; Waldman, R.Z.; Ahmed, A.; Avila, J.R.; Elam, J.W.; Darling, S.B. Conformal nitrogen-doped TiO2 photocatalytic coatings for sunlight-activated membranes. Adv. Sustain. Syst. 2017, 1, 1600041. [Google Scholar] [CrossRef]
- Akhtarianfar, S.F.; Khayatian, A.; Shakernejad, R.; Almasi-Kashi, M.; Hong, S.W. Improved sensitivity of UV sensors in hierarchically structured arrays of network-loaded ZnO nanorods via optimization techniques. RSC Adv. 2017, 7, 32316–32326. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, L.; Darbari, S.; Dehghan Nayeri, F. Realization of a reduced graphene oxide/ZnO nanorod photodetector, suitable for self-powered applications. Sci. Iran. 2018, 25, 1824–1834. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, P.; Wang, N.; Ma, Y.; San, H. UV-assisted photochemical synthesis of reduced graphene oxide/ZnO nanowires composite for photoresponse enhancement in UV photodetectors. Nanomaterials 2018, 8, 26. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, X.; Wang, Y.; Muhammad, S.; Huang, Y.; He, J. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures. Nanoscale 2012, 4, 2678–2684. [Google Scholar] [CrossRef]
- Azarang, M.; Shuhaimi, A.; Yousefi, R.; Sookhakian, M. Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation. J. Appl. Phys. 2014, 116, 084307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.W.; Fu, H.B.; Zhu, Y.F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 2008, 18, 2180–2189. [Google Scholar] [CrossRef]
- Makal, P.; Das, D. Superior photocatalytic dye degradation under visible light by reduced graphene oxide laminated TiO2-B nanowire composite. J. Environ. Chem. Eng. 2019, 7, 103358. [Google Scholar] [CrossRef]
- Khandelwal, M.; Kumar, A. Electrochemical behavior of glycine-mediated N-doped reduced graphene oxide. New J. Chem. 2017, 41, 8333–8340. [Google Scholar] [CrossRef]
- Mote, V.D.; Huse, V.R.; Purushotham, Y.; Shah, S.S.; Dole, B.N. Synthesis and characterization of Mn doped ZnS nanometer-sized particles. AIP Conf. Proc. 2012, 1447, 217–218. [Google Scholar]
- Teo, P.; Lim, H.; Huang, N.; Chia, C.; Harrison, I. Room temperature in situ chemical synthesis of Fe3O4/graphene. Ceram. Int. 2012, 38, 6411–6416. [Google Scholar] [CrossRef]
- Kumar, S.V.; Huang, N.; Yusoff, N.; Lim, H. High performance magnetically separable graphene/zinc oxide nanocomposite. Mater. Lett. 2013, 93, 411–414. [Google Scholar] [CrossRef]
- Khandelwal, M.; Li, Y.; Molla, A.; Hur, S.H.; Chung, J.S. Single precursor mediated one-step synthesis of ternary-doped and functionalized reduced graphene oxide by pH tuning for energy storage applications. Chem. Eng. J. 2017, 330, 965–978. [Google Scholar] [CrossRef]
- Khandelwal, M.; Li, Y.; Hur, S.H.; Chung, J.S. Surface modification of co-doped reduced graphene oxide through alkanolamine functionalization for enhanced electrochemical performance. New J. Chem. 2018, 42, 1105–1114. [Google Scholar] [CrossRef]
- Kurniasari; Maulana, A.; Nugraheni, A.Y.; Jayanti, D.N.; Mustofa, S.; Baqiya, M.A.; Darminto. Defect and Magnetic Properties of Reduced Graphene Oxide Prepared from Old Coconut Shell. IOP Conf. Ser. Mater. Sci. Eng. 2017, 196, 012021. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S.K.; Sachdev, K. Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromol. Symp. 2017, 376, 1700006. [Google Scholar] [CrossRef]
- Shahid, M.; Wang, Y.; Yang, J.; Li, T.; Cheng, J.; Zhang, M.; Xing, Y.; Wan, C.; Pan, W. Synergetic Enhancement in Photosensitivity and Flexibility of Photodetectors Based on Hybrid Nanobelt Network. Adv. Mater. Interfaces 2017, 4, 1700909. [Google Scholar] [CrossRef]
- Wisz, G.; Virt, I.; Sagan, P.; Potera, P.; Yavorskyi, R. Structural, optical and electrical properties of Zinc Oxide layers produced by pulsed laser deposition method. Nanoscale Res. Lett. 2017, 12, 253. [Google Scholar] [CrossRef]
- Muchuweni, E.; Sathiaraj, T.; Nyakotyo, H. Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 2017, 3, e00285. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, Z.; Li, J.; Zhou, B.; Shan, M.; Li, Y.; Liu, L.; Li, B.; Niu, J. Modifying graphite oxide nanostructures in various media by high-energy irradiation. RSC Adv. 2014, 4, 1025–1031. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Radiman, S.; Daud, A.; Tabet, N.; Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013, 39, 2283–2292. [Google Scholar] [CrossRef]
- Romeiro, F.C.; Rodrigues, M.A.; Silva, L.A.; Catto, A.C.; da Silva, L.F.; Longo, E.; Nossol, E.; Lima, R.C. rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method. Appl. Surf. Sci. 2017, 423, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Omar, F.S.; Nay Ming, H.; Hafiz, S.M.; Ngee, L.H. Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. Int. J. Photoenergy 2014, 2014, 176835. [Google Scholar] [CrossRef]
- Dillip, G.R.; Banerjee, A.N.; Anitha, V.C.; Deva Prasad Raju, B.; Joo, S.W.; Min, B.K. Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl. Mater. Interfaces 2016, 8, 5025–5039. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Safa, S.; Azimirad, R.; Mokhtari, S. Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector. J. Mater. Sci. Mater. Electron. 2017, 28, 6919–6927. [Google Scholar] [CrossRef]
- Noh, H.W.; Jeong, S.M.; Cho, J.; Hong, J.I. Ultrahigh photosensitivity of the polar surfaces of single crystalline ZnO nanoplates. Nanoscale 2018, 10, 6801–6805. [Google Scholar] [CrossRef]
- Jing, G.; Zhang, X.; Yu, D. Effect of surface morphology on the mechanical properties of ZnO nanowires. Appl. Phys. A 2010, 100, 473–478. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, N.; Wei, Y.; Zhang, G. An in situ gelatin-assisted hydrothermal synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC Adv. 2014, 4, 7933–7943. [Google Scholar] [CrossRef]
- Wu, H.; Lin, S.; Chen, C.; Liang, W.; Liu, X.; Yang, H. A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater. Res. Bull. 2016, 83, 434–441. [Google Scholar] [CrossRef]
- Tien, H.N.; Khoa, N.T.; Hahn, S.H.; Chung, J.S.; Shin, E.W.; Hur, S.H.; Luan, V.H.; Hoa, L.T. One-pot synthesis of a reduced graphene oxide–zinc oxide sphere composite and its use as a visible light photocatalyst. Chem. Eng. J. 2013, 229, 126–133. [Google Scholar] [CrossRef]
- Mandal, S.K.; Dutta, K.; Pal, S.; Mandal, S.; Naskar, A.; Pal, P.K.; Bhattacharya, T.; Singha, A.; Saikh, R.; De, S.; et al. Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes. Mater. Chem. Phys. 2019, 223, 456–465. [Google Scholar] [CrossRef]
Samples | SEM | XRD | ||||
---|---|---|---|---|---|---|
Diameter (nm) | Length (nm) | Shape | Crystal Size (nm) | Lattice Parameter (Å) | ||
a | c | |||||
ZnO | 31.7 | - | Nanoparticles | 33.77 | 3.299 | 5.209 |
ZnO/rGO (10%) | 25.8 | 44.1 | Nanoparticles/ Nanorods | 30.66 | 3.299 | 5.207 |
ZnO/rGO (20%) | 23.8 | 63.8 | Nanoparticles/ Nanorods | 24.92 | 3.299 | 5.203 |
ZnO/rGO (30%) | 24.6 | 106.8 | Nanorods | 25.62 | 3.300 | 5.209 |
Samples | Raman Data | UV–Vis Data | ||||||
---|---|---|---|---|---|---|---|---|
ZnO Vibrational Mode (cm) | GO Vibrational Mode (cm) | E (eV) | E (eV) | |||||
E | E | D Peak | G Peak | |||||
GO | - | - | - | 1358.61 | 1596.77 | 0.815 | - | - |
ZnO | 435.84 | 566.97 | 0.219 | - | - | - | 3.148 | 0.241 |
ZnO/rGO (10%) | 433.97 | 570.83 | 0.613 | 1343.18 | 1594.70 | 0.870 | 2.976 | 0.549 |
ZnO/rGO (20%) | 431.98 | 566.01 | 0.686 | 1351.86 | 1588.10 | 0.867 | 2.946 | 0.658 |
ZnO/rGO (30%) | 434.87 | 578.54 | 0.664 | 1357.66 | 1588.10 | 0.862 | 2.897 | 0.646 |
Sample | XPS – O 1s | ||||||
---|---|---|---|---|---|---|---|
O | O | O | O/O Ratio | ||||
Peak Position | % Area | Peak Position | % Area | Peak Position | % Area | ||
ZnO | 530.83 | 41.30 | 531.53 | 26.67 | 532.47 | 32.03 | 0.646 |
ZnO/rGO (10%) | 530.82 | 40.08 | 531.80 | 41.50 | 533.20 | 18.42 | 1.035 |
ZnO/rGO (20%) | 530.89 | 26.79 | 531.64 | 34.78 | 533.02 | 38.43 | 1.298 |
ZnO/rGO (30%) | 531.00 | 38.84 | 531.95 | 41.50 | 533.05 | 19.66 | 1.068 |
Samples | Photosensitivity (%) | Photocatalytic Activity | |||||
---|---|---|---|---|---|---|---|
No Bending | Bending Radius (R) | MB Degradation | k (min) | R | |||
12.5 (mm) | 10 (mm) | 7.5 (mm) | |||||
ZnO | 1.51 | 1.82 (↑21.47%) | 1.69 (↑12.70%) | 1.44 (↓3.77%) | 4.11% | 0.0027 | 0.8793 |
ZnO/rGO (10%) | 1.60 | 1.99 (↑23.55%) | 1.82 (↑13.20%) | 1.41 (↓12.21%) | 56.62% | 0.0140 | 0.9982 |
ZnO/rGO (20%) | 3.94 | 8.81 (↑123.59%) | 4.25 (↑7.85%) | 3.84 (↓2.45%) | 93.78% | 0.0482 | 0.9901 |
ZnO/rGO (30%) | 1.65 | 5.70 (↑244.57%) | 3.74 (↑126.22%) | 2.36 (↑42.83%) | 86.43% | 0.0339 | 0.9985 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodwihok, C.; Wongratanaphisan, D.; Thi Ngo, Y.L.; Khandelwal, M.; Hur, S.H.; Chung, J.S. Effect of GO Additive in ZnO/rGO Nanocomposites with Enhanced Photosensitivity and Photocatalytic Activity. Nanomaterials 2019, 9, 1441. https://doi.org/10.3390/nano9101441
Rodwihok C, Wongratanaphisan D, Thi Ngo YL, Khandelwal M, Hur SH, Chung JS. Effect of GO Additive in ZnO/rGO Nanocomposites with Enhanced Photosensitivity and Photocatalytic Activity. Nanomaterials. 2019; 9(10):1441. https://doi.org/10.3390/nano9101441
Chicago/Turabian StyleRodwihok, Chatchai, Duangmanee Wongratanaphisan, Yen Linh Thi Ngo, Mahima Khandelwal, Seung Hyun Hur, and Jin Suk Chung. 2019. "Effect of GO Additive in ZnO/rGO Nanocomposites with Enhanced Photosensitivity and Photocatalytic Activity" Nanomaterials 9, no. 10: 1441. https://doi.org/10.3390/nano9101441
APA StyleRodwihok, C., Wongratanaphisan, D., Thi Ngo, Y. L., Khandelwal, M., Hur, S. H., & Chung, J. S. (2019). Effect of GO Additive in ZnO/rGO Nanocomposites with Enhanced Photosensitivity and Photocatalytic Activity. Nanomaterials, 9(10), 1441. https://doi.org/10.3390/nano9101441