Modulating Catalytic Activity and Durability of PtFe Alloy Catalysts for Oxygen Reduction Reaction Through Controlled Carbon Shell Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Carbon Shell-Coated PtFe Catalysts
2.3. Electrochemical Measurements
2.4. Physical Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Budak, Y.; Devrim, Y. Investigation of micro-combined heat and power application of PEM fuel cell systems. Energy Convers. Manag. 2018, 160, 486–494. [Google Scholar] [CrossRef]
- Mao, L.; Fu, K.; Jin, J.; Yang, S.; Li, G. PtFe alloy catalyst supported on porous carbon nanofiber with high activity and durability for oxygen reduction reaction. Int. J. Hydrogen Energy 2019, 44, 18083–18092. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Long, W.; Wang, L.; Yuan, R.; Ignaszak, A.; Fang, B.; Wilkinson, D.P. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258–275. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR Catalysts. Adv. Mater. 2019, 31, 1802234. [Google Scholar] [CrossRef]
- Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [Google Scholar] [CrossRef]
- Kim, T.-J.; Kwon, G.; Kim, Y.-T. Anomalously increased oxygen reduction reaction activity with accelerated durability test cycles for platinum on thiolated carbon nanotubes. Chem. Commun. 2014, 50, 596–598. [Google Scholar] [CrossRef]
- Malheiro, A.R.; Perez, J.; Villullas, H.M. Well-alloyed PtFe/C nanocatalysts of controlled composition and same particle size: Oxygen reduction and methanol tolerance. J. Electrochem. Soc. 2009, 156, B51–B58. [Google Scholar] [CrossRef]
- Duan, H.; Hao, Q.; Xu, C. Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction. J. Power Sources 2014, 269, 589–596. [Google Scholar] [CrossRef]
- Chaisubanan, N.; Chanlek, N.; Puarporn, Y.; Limphirat, W.; Piumsomboon, P.; Pruksathorn, K.; Hunsom, M. Insight into the alternative metal oxide modified carbon-supported PtCo for oxygen reduction reaction in proton exchange membrane fuel cell. J. Renew. Sustain. Energy 2019, 139, 679–687. [Google Scholar] [CrossRef]
- Lin, R.; Zhao, T.; Shang, M.; Wang, J.; Tang, W.; Guterman, V.E.; Ma, J. Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell. J. Power Sources 2015, 293, 274–282. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Fang, J.; Zou, S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010, 10, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, B.; Yang, D.; Lv, H.; Zhang, C. Preparation optimization and single cell application of PtNi/C octahedral catalyst with enhanced ORR performance. Electrochim. Acta 2018, 288, 126–133. [Google Scholar] [CrossRef]
- Zignani, S.C.; Antolini, E.; Gonzalez, E.R. Stability of Pt–Ni/C (1:1) and Pt/C electrocatalysts as cathode materials for polymer electrolyte fuel cells: Effect of ageing tests. J. Power Sources 2009, 191, 344–350. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Aricò, A.; Baglio, V. Application of low-cost Me-NC (Me = Fe or Co) electrocatalysts derived from EDTA in direct methanol fuel cells (DMFCs). Materials 2018, 11, 1193. [Google Scholar] [CrossRef] [PubMed]
- Zignani, S.; Baglio, V.; Sebastián, D.; Saccà, A.; Gatto, I.; Aricò, A. Towards highly performing and stable PtNi catalysts in polymer electrolyte fuel cells for automotive application. Materials 2017, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Jung, N.; Sohn, Y.; Park, J.H.; Nahm, K.S.; Kim, P.; Yoo, S.J. High-performance PtCux@Pt core-shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction. Appl. Catal. B Environ. 2016, 196, 199–206. [Google Scholar] [CrossRef]
- Mardle, P.; Du, S. Annealing behaviour of Pt and PtNi nanowires for proton exchange membrane fuel cells. Materials 2018, 11, 1473. [Google Scholar] [CrossRef]
- Yang, D.; Yan, Z.; Li, B.; Higgins, D.C.; Wang, J.; Lv, H.; Chen, Z.; Zhang, C. Highly active and durable Pt–Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. Int. J. Hydrogen Energy 2016, 41, 18592–18601. [Google Scholar] [CrossRef]
- Chen, L.; Chan, M.C.Y.; Nan, F.; Bock, C.; Botton, G.A.; Mercier, P.H.J.; MacDougall, B.R. Compositional and morphological changes of ordered PtxFey/C oxygen electroreduction catalysts. ChemCatChem 2013, 5, 1449–1460. [Google Scholar] [CrossRef]
- Narayanamoorthy, B.; Linkov, V.; Sita, C.; Pasupathi, S. Pt3M (M: Co, Ni and Fe) bimetallic alloy nanoclusters as support-free electrocatalysts with improved activity and durability for dioxygen reduction in PEM fuel cells. Electrocatalysis 2016, 7, 400–410. [Google Scholar] [CrossRef]
- Choi, J.; Cho, J.; Roh, C.-W.; Kim, B.-S.; Choi, M.S.; Jeong, H.; Ham, H.; Lee, H. Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. Appl. Catal. B Environ. 2019, 247, 142–149. [Google Scholar] [CrossRef]
- Hwang, S.J.; Kim, S.-K.; Lee, J.-G.; Lee, S.-C.; Jang, J.H.; Kim, P.; Lim, T.-H.; Sung, Y.-E.; Yoo, S.J. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction. J. Am. Chem. Soc. 2012, 134, 19508–19511. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Mei, L.; Han, G.; Chen, J.; Zhang, G.; Quan, Y.; Gu, N.; Zhang, L.; Fang, Y.; Qian, B.; et al. Facile synthesis of nanoporous Pt-Y alloy with enhanced electrocatalytic activity and durability. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Du, X.X.; He, Y.; Wang, X.X.; Wang, J.N. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 2016, 9, 2623–2632. [Google Scholar] [CrossRef]
- Chung, D.Y.; Jun, S.W.; Yoon, G.; Kwon, S.G.; Shin, D.Y.; Seo, P.; Yoo, J.M.; Shin, H.; Chung, Y.-H.; Kim, H.; et al. Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485. [Google Scholar] [CrossRef]
- Robertson, J. Heterogeneous catalysis model of growth mechanisms of carbon nanotubes, graphene and silicon nanowires. J. Mater. Chem. 2012, 22, 19858–19862. [Google Scholar] [CrossRef]
- Moisala, A.; Nasibulin, A.G.; Kauppinen, E.I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—A review. J. Phys. Condens. Matter 2003, 15, S3011–S3035. [Google Scholar] [CrossRef]
- Jang, J.; Sharma, M.; Choi, D.; Kang, Y.S.; Kim, Y.; Min, J.; Sung, H.; Jung, N.; Yoo, S.J. Boosting fuel cell durability under shut-down/start-up conditions using a hydrogen oxidation-selective metal-carbon hybrid core-shell catalyst. ACS Appl. Mater. Interfaces 2019, 11, 27735–27742. [Google Scholar] [CrossRef]
- Sung, H.; Sharma, M.; Jang, J.; Lee, S.-Y.; Choi, M.-G.; Lee, K.; Jung, N. Boosting the oxygen reduction activity of a nano-graphene catalyst by charge redistribution at the graphene-metal interface. Nanoscale 2019, 11, 5038–5047. [Google Scholar] [CrossRef]
- Sharma, M.; Jang, J.-H.; Shin, D.Y.; Kwon, J.A.; Lim, D.-H.; Choi, D.; Sung, H.; Jang, J.; Lee, S.-Y.; Lee, K.Y.; et al. Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction. Energy Environ. Sci. 2019, 12, 2200–2211. [Google Scholar] [CrossRef]
- Jiang, L.; Yan, J.; Hao, L.; Xue, R.; Sun, G.; Yi, B. High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 2013, 56, 146–154. [Google Scholar] [CrossRef]
- Wang, Z.; Li, B.; Ge, X.; Goh, F.W.T.; Zhang, X.; Du, G.; Wuu, D.; Liu, Z.; Andy Hor, T.S.; Zhang, H.; et al. Co@Co3O4@PPD core@bishell nanoparticle-based composite as an efficient electrocatalyst for oxygen reduction reaction. Small 2016, 12, 2580–2587. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yu, L.; Deng, D.; Chen, X.; Yang, F.; Bao, X. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. J. Mater. Chem. A 2013, 1, 14868–14873. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, X.; Sun, Z.; You, T. Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 2013, 5, 9528–9531. [Google Scholar] [CrossRef]
- Worsley, M.A.; Pham, T.T.; Yan, A.; Shin, S.J.; Lee, J.R.I.; Bagge-Hansen, M.; Mickelson, W.; Zettl, A. Synthesis and characterization of highly crystalline graphene aerogels. ACS Nano 2014, 8, 11013–11022. [Google Scholar] [CrossRef]
- Sun, J.; Nam, Y.; Lindvall, N.; Cole, M.T.; Teo, K.B.K.; Woo Park, Y.; Yurgens, A. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation. Appl. Phys. Lett. 2014, 104, 152107. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.-F.; Kumar, D.; Sivadinarayana, C.; Clearfield, A.; Goodman, D.W. The formation of PdCx over Pd-based catalysts in vapor-phase vinyl acetate synthesis: Does a Pd-Au alloy catalyst resist carbide formation? Catal. Lett. 2004, 94, 131–134. [Google Scholar] [CrossRef]
- Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076. [Google Scholar] [CrossRef]
- Hyeon, Y.; Jung, S.-H.; Jang, W.; Kim, M.; Kim, B.-S.; Lee, J.-H.; Nandanapalli, K.R.; Jung, N.; Whang, D. Unraveling the factors affecting the electrochemical performance of MoS2-carbon composite catalysts for hydrogen evolution reaction: Surface defect and electrical resistance of carbon supports. ACS Appl. Mater. Interfaces 2019, 11, 5037–5045. [Google Scholar] [CrossRef]
- Mao, L.; Ba, Q.; Liu, S.; Jia, X.; Liu, H.; Chen, W.; Li, X. Pt–Nix alloy nanoparticles: A new strategy for cocatalyst design on a CdS surface for photo-catalytic hydrogen generation. RSC Adv. 2018, 8, 31529–31537. [Google Scholar] [CrossRef]
- Scofield, M.E.; Koenigsmann, C.; Wang, L.; Liu, H.; Wong, S.S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350–363. [Google Scholar] [CrossRef]
- Cai, Z.; Kuang, Y.; Qi, X.; Wang, P.; Zhang, Y.; Zhang, Z.; Sun, X. Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 1182–1187. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Jeffery, A.A.; Min, J.; Jung, N. Modulating Catalytic Activity and Durability of PtFe Alloy Catalysts for Oxygen Reduction Reaction Through Controlled Carbon Shell Formation. Nanomaterials 2019, 9, 1491. https://doi.org/10.3390/nano9101491
Kim Y, Jeffery AA, Min J, Jung N. Modulating Catalytic Activity and Durability of PtFe Alloy Catalysts for Oxygen Reduction Reaction Through Controlled Carbon Shell Formation. Nanomaterials. 2019; 9(10):1491. https://doi.org/10.3390/nano9101491
Chicago/Turabian StyleKim, Youngjin, A. Anto Jeffery, Jiho Min, and Namgee Jung. 2019. "Modulating Catalytic Activity and Durability of PtFe Alloy Catalysts for Oxygen Reduction Reaction Through Controlled Carbon Shell Formation" Nanomaterials 9, no. 10: 1491. https://doi.org/10.3390/nano9101491
APA StyleKim, Y., Jeffery, A. A., Min, J., & Jung, N. (2019). Modulating Catalytic Activity and Durability of PtFe Alloy Catalysts for Oxygen Reduction Reaction Through Controlled Carbon Shell Formation. Nanomaterials, 9(10), 1491. https://doi.org/10.3390/nano9101491