Ferroelectric Diode Effect with Temperature Stability of Double Perovskite Bi2NiMnO6 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, S.; Lee, B.; Bae, B.; Chai, J.; Lee, S.; Kim, C. Ambipolar thin-film transistors based on organic semiconductor blend. Synth. Met. 2019, 253, 40–47. [Google Scholar] [CrossRef]
- Shiryaev, A.O.; Rozanov, K.N.; Vyzulin, S.A.; Kevraletin, A.L.; Syr’ev, N.E.; Vyzulin, E.S.; Lahderanta, E.; Maklakov, S.A.; Granovsky, A.B. Magnetic resonances and microwave permeability in thin Fe films on flexible polymer substrates. J. Magn. Magn. Mater. 2018, 461, 76–81. [Google Scholar] [CrossRef]
- Makhlouf, M.M. Preparation and optical characterization of β-MnO2 nano thin films for application in heterojunction photodiodes. Sens. Actuators A Phys. 2018, 279, 145–156. [Google Scholar] [CrossRef]
- Munshi, A.H.; Sasidharan, N.; Pinkayan, S.; Barth, K.L.; Sampath, W.S.; Ongsakul, W. Thin-film CdTe photovoltaics—The technology for utility scale sustainable energy generation. Sol. Energy 2018, 173, 511–516. [Google Scholar] [CrossRef]
- Yin, L.; Wang, C.; Li, L.; Shen, Q.; Zhang, L. Large room temperature magnetoresistance in La0.9Sr0.1MnO3 thin films. J. Alloys Compd. 2018, 730, 327–332. [Google Scholar] [CrossRef]
- Mitta, S.B.; Reddeppa, M.; Vellampatti, S.; Dugasani, S.R.; Yoo, S.; Lee, S.; Kim, M.D.; Park, S.H. Gold nanoparticle-embedded DNA thin films for ultraviolet photodetectors. Sens. Actuators B Chem. 2018, 275, 137–144. [Google Scholar] [CrossRef]
- Azuma, M.; Takata, K.; Saito, T.; Ishiwata, S.; Shimakawa, Y.; Takano, M. Designed Ferromagnetic, Ferroelectric Bi2NiMnO6. J. Am. Chem. Soc. 2005, 127, 8889–8892. [Google Scholar] [CrossRef]
- Sakai, M.; Masuno, A.; Kan, D.; Hashisaka, M.; Takata, K.; Azuma, M.; Takano, M.; Shimakawa, Y. Multiferroic thin film of Bi2NiMnO6 with ordered double-perovskite structure. Appl. Phys. Lett. 2007, 90, 072903. [Google Scholar] [CrossRef] [Green Version]
- Iliev, M.N.; Padhan, P.; Gupta, A. Temperature-dependent Raman study of multiferroic Bi2NiMnO6 thin films. Phys. Rev. B 2008, 77, 172303. [Google Scholar] [CrossRef]
- Padhan, P.; LeClair, P.; Gupta, A.; Srinivasan, G. Magnetodielectric response in epitaxial thin films of multiferroic Bi2NiMnO6. J. Phys. Condens. Matter 2008, 20, 355003. [Google Scholar] [CrossRef]
- Padhan, P.; LeClair, P.; Gupta, A.; Subramanian, M.A.; Srinivasan, G. Magnetodielectric effect in Bi2NiMnO6-La2NiMnO6 superlattices. J. Phys. Condens. Matter 2009, 21, 306004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathi, A.; Anshul, A.; Gupta, A.; Rout, P.K.; Maurya, K.K.; Kotnala, R.K.; Pant, R.P.; Basheed, G.A. Large low-field magnetodielectric response in multiferroic Bi2NiMnO6 thin film. J. Phys. D Appl. Phys. 2017, 50, 135006. [Google Scholar] [CrossRef]
- Zhao, H.J.; Chen, X.M. First-principles study on the differences of possible ferroelectric behavior and magnetic exchange interaction between Bi2NiMnO6 and La2NiMnO6. AIP Adv. 2012, 2, 042143. [Google Scholar] [CrossRef]
- Ciucivara, A.; Sahu, B.; Kleinman, L. Density functional study of multiferroic Bi2NiMnO6. Phys. Rev. B 2007, 76, 064412. [Google Scholar] [CrossRef]
- Shimakawa, Y.; Kan, D.; Kawai, M.; Sakai, M.; Inoue, S.; Azuma, M.; Kimura, S.; Sakata, O. Direct observation of B-site ordering in multiferroic Bi2NiMnO6 thin film. Jpn. J. Appl. Phys. 2007, 46, L845–L847. [Google Scholar] [CrossRef]
- Bahoosh, S.G.; Wesselinowa, J.M.; Trimper, S. The magnetoelectric effect and double-perovskite structure. Phys. Status Solidi B 2012, 249, 1602–1606. [Google Scholar] [CrossRef]
- Zhao, H.J.; Liu, X.Q.; Chen, X.M. Density functional investigations on electronic structures, magnetic ordering and ferroelectric phase transition in multiferroic Bi2NiMnO6. AIP Adv. 2012, 2, 022115. [Google Scholar] [CrossRef] [Green Version]
- Dieguez, D.; Iniguez, J. Multiferroic Bi2NiMnO6 thin films: A computational prediction. Phys. Rev. B 2017, 95, 085129. [Google Scholar] [CrossRef] [Green Version]
- Li, W.P.; Liu, Q.X.; Tang, X.G.; Lai, J.L.; Jiang, Y.P. Low leakage current in (Bi0.95La0.05)2NiMnO6 double-perovskite thin films prepared by chemical solution deposition. Mater Lett. 2014, 120, 23–25. [Google Scholar] [CrossRef]
- Harijan, P.K.; Singh, A.; Upadhyay, C.; Pandey, D. Néel transition in the multiferroic BiFeO3-0.25PbTiO3 nanoparticles with anomalous size effect. J. Appl. Phys. 2019, 125, 024102. [Google Scholar] [CrossRef]
- Cerrato, J.M.; Hochella, M.F.; Knocke, W.R.; Dietrich, A.M.; Cromer, T.F. Use of XPS to Identify the Oxidation State of Mn in Solid Surfaces of Filtration Media Oxide Samples from Drinking Water Treatment Plants. Environ. Sci. Technol. 2010, 44, 5881–5886. [Google Scholar] [CrossRef] [PubMed]
- Amaya, Á.A.; González, C.A.; Niño-Gómez, M.E.; Martínez, O.F. XPS fitting model proposed to the study of Ni and La in deactivated FCC catalysts. J. Electron. Spectrosc. 2019, 233, 5–10. [Google Scholar] [CrossRef]
- Afroz, K.; Moniruddin, M.; Bakranov, N.; Kudaibergenov, S.; Nuraje, N.A. Heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. J. Mater. Chem. A 2018, 6, 21696–21718. [Google Scholar] [CrossRef]
- Chang, C.M.; Hsu, C.H.; Liu, Y.W.; Chien, T.C.; Sung, C.H.; Yeh, P.H. Interface engineering: Broadband light and low temperature gas detection abilities using a nano-heterojunction device. Nanoscale 2015, 7, 20126–20131. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.G.; Rao, K.S.R.K. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: Fundamental and critical aspects. Energy Environ. Sci. 2014, 7, 45–102. [Google Scholar] [CrossRef]
- Dietz, G.W.; Waser, R. Charge injection in SrTiO3 thin films. Thin Solid Film. 1997, 299, 53–58. [Google Scholar] [CrossRef]
- Wang, Y.G.; Tang, X.G.; Liu, Q.X.; Jiang, Y.P.; Jiang, L.L. Room temperature tunable multiferroic properties in sol-gel derived nanocrystalline Sr(Ti1−xFex)O3−δ thin films grown on LaNiO3 buffered silicon substrates. Nanomaterials 2017, 7, 264. [Google Scholar] [CrossRef] [Green Version]
- Barnett, C.J.; Mourgelas, V.; McGettrick, J.D.; Maffeis, T.G.G.; Barron, A.R.; Cobley, R.J. The effects of vacuum annealing on the conduction characteristics of ZnO nanorods. Mater. Lett. 2019, 243, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S. Electrokinetic analyses in biofilm anodes: Ohmic conduction of extracellular electron transfer. Bioresour. Technol. 2018, 256, 509–514. [Google Scholar] [CrossRef]
- Abbaszadeh, D.; Blom, P.W.M. Efficient Blue Polymer Light-Emitting Diodes with Electron-Dominated Transport Due to Trap Dilution. Adv. Electron. Mater. 2016, 2, 1500406. [Google Scholar] [CrossRef]
- Rani, V.; Sharma, A.; Kumar, P.; Singh, B.; Ghosh, S. Charge transport mechanism in copper phthalocyanine thin films with and without traps. RSC Adv. 2017, 7, 54911–54919. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.S.; Hayat, K.; Ali, S.; Rasool, K.; Iqbal, Y. Conduction mechanisms in lanthanum manganite nanofibers. Mat. Sci. Semicon. Proc. 2019, 90, 65–71. [Google Scholar] [CrossRef]
- Perello, D.J.; Lim, S.C.; Chae, S.J.; Lee, I.; Kim, M.J.; Lee, Y.H.; Yun, M. Thermionic Field Emission Transport in Carbon Nanotube Transistors. ACS Nano 2011, 5, 1756–1760. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Nieva, J.F.; Dresselhaus, M.S.; Levitov, L.S. Thermionic Emission and Negative dI/dV in Photoactive Graphene Heterostructures. Nano Lett. 2015, 15, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Aykol, M.; Chang, C.C.; Levi, A.F.J.; Cronin, S.B. Graphene-Silicon Schottky Diodes. Nano Lett. 2011, 11, 1863–1867. [Google Scholar] [CrossRef]
- Lao, C.S.; Liu, J.; Gao, P.; Zhang, L.; Davidovic, D.; Tummala, R.; Wang, Z.L. ZnO Nanobelt/Nanowire Schottky Diodes Formed by Dielectrophoresis Alignment across Au Electrodes. Nano Lett. 2006, 6, 263–266. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, W.-M.; Liu, Q.-X.; Tang, X.-G.; Jiang, Y.-P.; Li, W.-H.; Li, W.-P.; Cheng, T.-D. Ferroelectric Diode Effect with Temperature Stability of Double Perovskite Bi2NiMnO6 Thin Films. Nanomaterials 2019, 9, 1783. https://doi.org/10.3390/nano9121783
Zhong W-M, Liu Q-X, Tang X-G, Jiang Y-P, Li W-H, Li W-P, Cheng T-D. Ferroelectric Diode Effect with Temperature Stability of Double Perovskite Bi2NiMnO6 Thin Films. Nanomaterials. 2019; 9(12):1783. https://doi.org/10.3390/nano9121783
Chicago/Turabian StyleZhong, Wen-Min, Qiu-Xiang Liu, Xin-Gui Tang, Yan-Ping Jiang, Wen-Hua Li, Wan-Peng Li, and Tie-Dong Cheng. 2019. "Ferroelectric Diode Effect with Temperature Stability of Double Perovskite Bi2NiMnO6 Thin Films" Nanomaterials 9, no. 12: 1783. https://doi.org/10.3390/nano9121783
APA StyleZhong, W. -M., Liu, Q. -X., Tang, X. -G., Jiang, Y. -P., Li, W. -H., Li, W. -P., & Cheng, T. -D. (2019). Ferroelectric Diode Effect with Temperature Stability of Double Perovskite Bi2NiMnO6 Thin Films. Nanomaterials, 9(12), 1783. https://doi.org/10.3390/nano9121783