New Insights about CuO Nanoparticles from Inelastic Neutron Scattering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Roa, C.N.R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306. [Google Scholar] [CrossRef]
- Feygenson, M.; Teng, X.; Inderhees, S.E.; Yin, Y.; Du, W.; Han, W.; Wen, J.; Xu, Z.; Podlesnyak, A.A.; Niedziela, J.L.; et al. Low-energy magnetic excitations in Co/CoO core/shell nanoparticles. Phys. Rev. B 2011, 83, 174414. [Google Scholar] [CrossRef] [Green Version]
- Rao, G.N.; Yao, Y.D.; Chen, J.W. Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing. J. Appl. Phys. 2009, 105, 093901. [Google Scholar]
- Ahmad, T.; Chopra, R.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route. Sol. Stat. Sci. 2005, 7, 891–895. [Google Scholar] [CrossRef]
- Bisht, V.; Rajeev, K.P.; Banerjee, S. Anomalous magnetic behavior of CuO nanoparticles. Sol. Stat. Commun. 2010, 150, 884–887. [Google Scholar] [CrossRef] [Green Version]
- Wesselinowa, J.M. Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles. J. Magn. Magn. Mater. 2010, 322, 234–237. [Google Scholar] [CrossRef]
- Rehman, S.; Mumtaz, A.; Hasanain, S.K. Size effects on the magnetic and optical properties of CuO nanoparticles. J. Nanopart. Res. 2011, 13, 2497–2507. [Google Scholar] [CrossRef]
- Gözüak, F.; Köseoğlu, Y.; Baykal, A.; Kavas, H. Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Magn. Magn. Mater. 2009, 321, 2170–2177. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Güngüne, H.; Bayka, A.; Trukhanov, S.V.; Trukhanov, A.V. Manganese/Yttrium co-doped strontium nanohexaferrites: Evaluation of magnetic susceptibility and Mössbauer spectra. Nanomaterials 2019, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Borzi, R.A.; Stewart, S.J.; Mercader, R.C.; Punte, G.; Garcia, F. Magnetic behavior of nanosized cupric oxide. J. Magn. Magn. Mater. 2001, 226–230, 1513–1515. [Google Scholar] [CrossRef]
- Karthik, K.; Jaya, N.V.; Kanagaraj, M.; Arumugam, S. Temperature-dependent magnetic anomalies of CuO nanoparticles. Sol. Stat. Commun. 2011, 151, 564–568. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, B.; Cormier, S.A. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol. In Vitro 2009, 23, 1365–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rout, L.; Sen, T.K.; Punniyamurthy, T. Efficient CuO-nanoparticle-catalyzed C-S cross-coupling of thiols with iodobenzene. Angew. Chem. Int. Ed. 2007, 46, 5583–5586. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.G.; Karvembu, R. CuO nanoparticles: A simple, effective, ligand free, and reusable heterogeneous catalyst for N-arylation of benzimidazole. Ind. Eng. Chem. Res. 2011, 50, 9594–9600. [Google Scholar] [CrossRef]
- Mahato, T.H.; Singh, B.; Srivastava, A.K.; Prasad, G.K.; Srivastava, A.R.; Ganesan, K.; Vijayaraghavan, R. Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of Sulphur mustard. J. Hazard. Mater. 2011, 192, 1890–1895. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, J.; Feng, Y.-B.; Hong, L.; Chen, Q.-Y.; Wu, L.-F.; Lin, X.-H.; Xia, X.-H. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 2012, 137, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Swamy, B.E.K.; Jayadevappa, H. CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim. Acta 2012, 61, 78–86. [Google Scholar] [CrossRef]
- Kimura, T.; Sekio, Y.; Nakamura, H.; Siegrist, T.; Ramirez, A.P. Cupric oxide as an induced-multiferroic with high-T-C. Nat. Mater. 2008, 7, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.P.P.; Gaw, S.M.; Doig, K.I.; Prabhakaran, D.; Wheeler, E.M.H.; Boothroyd, A.T.; Lloyd Hughes, J. High-temperature electromagnons in the magnetically induced multiferroic cupric oxide driven by intersublattice exchange. Nat. Commun. 2013, 5, 3787. [Google Scholar] [CrossRef] [PubMed]
- Rocquefelte, X.; Schwarz, K.; Blaha, P.; Kumar, S.; van den Brink, J. Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nat. Commun. 2013, 4, 2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åsbrink, S.; Norrby, L.-J. A refinement of the crystal structure of copper (II) oxide with a discussion of some exceptional esd’s. Acta Cryst. B 1970, 26, 8–15. [Google Scholar] [CrossRef]
- Åsbrink, S.; Waśkowska, A. CuO: X-ray single-crystal structure determination at 196 K and room temperature. J. Phys. Condens. Matter 1991, 3, 8173–8180. [Google Scholar] [CrossRef]
- Brese, N.E.; O’Keefe, M.; Ramakrishna, B.L.; von Dreele, R.B. Low-temperature structures of CuO And AgO and their relationships to those of MgO and PdO. J. Sol. State Chem. 1990, 89, 184–190. [Google Scholar] [CrossRef]
- Yang, B.X.; Thurston, T.R.; Tranquada, J.M.; Shriane, G. Magnetic neutron scattering study of single-crystal cupric oxide. Phys. Rev. B 1989, 39, 4344–4349. [Google Scholar] [CrossRef]
- Zheng, X.G.; Xu, C.N.; Nishikubo, K.; Nishiyama, K.; Higemoto, W.; Moon, W.J.; Tanaka, E.; Otabe, E.S. Finite-size effect on Neel temperature in antiferromagnetic nanoparticles. Phys. Rev. B 2005, 72, 014464. [Google Scholar] [CrossRef]
- Punnoose, A.; Magnone, H.; Seehra, M.S.; Bonevich, J. Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys. Rev. B 2001, 64, 174420. [Google Scholar] [CrossRef]
- Smith, S.J.; Huang, B.; Liu, S.; Liu, Q.; Olsen, R.E.; Boerio-Goates, J.; Woodfield, B.F. Synthesis of metal oxide nanoparticles via a robust “solvent-deficient” method. Nanoscale 2015, 7, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Spencer, E.C.; Ross, N.L.; Parker, S.F.; Olsen, R.E.; Woodfield, B.F. Inelastic neutron scattering studies of hydrated CuO, ZnO and CeO2 nanoparticles. Chem. Phys. 2013, 427, 66–70. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Trukhanov, S.V.; Lobanovski, L.S.; Bushinsky, M.V.; Fedotova, V.V.; Troyanchuk, I.O.; Trukhanov, A.V.; Ryzhov, V.A.; Szymczak, H.; Szymczak, R.; Baran, M. Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions. J. Phys. Condens. Matter 2005, 17, 6495–6506. [Google Scholar] [CrossRef]
- Granroth, G.E.; Kolesnikov, A.I.; Sherline, T.E.; Clancy, J.P.; Ross, K.A.; Ruff, J.P.C.; Gaulin, B.D.; Nagler, S.E. SEQUOIA: A Newly Operating Chopper Spectrometer at the SNS. J. Phys. Conf. Ser. 2010, 251, 012058. [Google Scholar] [CrossRef]
- Stone, M.B.; Niedziela, J.L.; Abernathy, D.L.; DeBeer-Schmitt, L.; Ehlers, G.; Garlea, O.; Granroth, G.; Graves-Brook, M.; Kolesnikov, A.I.; Podlesnyak, A. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source. Rev. Sci. Instrum. 2014, 85, 045113. [Google Scholar] [CrossRef] [PubMed]
- Squires, G.L. Introduction to the Theory of Thermal Neutron Scattering; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Marshall, W.; Lovesey, S.W. Theory of Thermal Neutron Scattering; Clarendon Press: Oxford, UK, 1971. [Google Scholar]
- Yang, B.X.; Tranquada, J.M.; Shirane, G. Neutron-scattering studies of the magnetic-structure of cupric oxide. Phys. Rev. B 1988, 38, 174–178. [Google Scholar] [CrossRef]
- Johnson, S.L.; de Souza, R.A.; Staub, U.; Beaud, P.; Möhr-Vorobeva, E.; Ingold, G.; Caviezel, A.; Scagnoli, V.; Schlotter, W.F.; Turner, J.J.; et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 2012, 108, 037203. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, J.B.; Brown, P.J.; Waklyn, B.M. Magnetism in cupric oxide. J. Phys. C Solid State Phys. 1988, 21, 2917–2929. [Google Scholar] [CrossRef]
- Brown, P.J.; Chattopadhyay, T.; Forsyth, J.B.; Nunez, V.; Tasset, F. Antiferromagnetism in CuO studied by neutron polarimetry. J. Phys. Condens. Matter 1991, 3, 4281–4287. [Google Scholar] [CrossRef]
- Wang, Z.; Qureshi, N.; Yasin, S.; Mukhin, A.; Ressouche, E.; Zherlitsyn, S.; Skourski, Y.; Geshev, J.; Ivanov, V.; Gospodinov, M.; et al. Magnetoelectric effect and phase transitions in CuO in external magnetic fields. Nat. Commun. 2016, 7, 10295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blundell, S. Magnetism in Condensed Matter; Oxford Master Series in Condensed Matter Physics; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Aïn, M.; Menelle, A.; Wanklyn, B.M.; Bertaut, E.F. Magnetic structure of CuO by neutron diffraction with polarization analysis. J. Phys. Condens. Matter 1992, 4, 5327–5338. [Google Scholar] [CrossRef]
- Aïn, M.; Reichardt, W.; Hennion, B.; Pepy, G.; Wanklyn, B.M. Magnetic excitations in CuO. Physica C 1989, 162–164, 1279–1280. [Google Scholar] [CrossRef]
- Koo, H.-J.; Whangbo, M.-H. Magnetic superstructures of cupric oxide CuO as ordered arrangements of one-dimensional antiferromagnetic chains. Inorg. Chem. 2003, 42, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Matsumoto, T.; Goto, A.; Rao, T.V.C.; Yoshimura, K.; Kosuge, K. Spin susceptibility and superexchange interaction in the antiferromagnet CuO. Phys. Rev. B 2003, 68, 224433. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, T.; McIntyre, G.J.; Vettier, C.; Brown, P.J.; Forsyth, J.B. Magnetic excitations and spin correlations in CuO. Physica B 1992, 180–181, 420–422. [Google Scholar] [CrossRef]
- Spencer, E.C.; Ross, N.L.; Olsen, R.E.; Huang, B.; Kolesnikov, A.I.; Woodfield, B.F. Thermodynamic properties of α-Fe2O3 and Fe3O4 nanoparticles. J. Phys. Chem. C 2015, 119, 9609–9616. [Google Scholar] [CrossRef]
- Mørup, S.; Hansen, M.F.; Frandsen, C. Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 2010, 1, 182–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mørup, S.; Frandsen, C.; Hansen, M.F. Uniform excitations in magnetic nanoparticles. Beilstein J. Nanotechnol. 2010, 1, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trukhanov, S.V.; Troyanchuk, I.O.; Trukhanov, A.V.; Fita, I.M.; Vasil’ev, A.N.; Maignan, A.; Szymczak, H. Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP Lett. 2006, 83, 33–36. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Kozlenko, D.P.; Trukhanov, A.V. High hydrostatic pressure effect on magnetic state of anion-deficient La0.70Sr0.30MnOx perovskite manganites. J. Magn. Magn. Mater. 2008, 320, e88–e91. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Szymczak, H. Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. J. Exp. Theor. Phys. 2010, 111, 209–214. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spencer, E.C.; Kolesnikov, A.I.; Woodfield, B.F.; Ross, N.L. New Insights about CuO Nanoparticles from Inelastic Neutron Scattering. Nanomaterials 2019, 9, 312. https://doi.org/10.3390/nano9030312
Spencer EC, Kolesnikov AI, Woodfield BF, Ross NL. New Insights about CuO Nanoparticles from Inelastic Neutron Scattering. Nanomaterials. 2019; 9(3):312. https://doi.org/10.3390/nano9030312
Chicago/Turabian StyleSpencer, Elinor C., Alexander I. Kolesnikov, Brian F. Woodfield, and Nancy L. Ross. 2019. "New Insights about CuO Nanoparticles from Inelastic Neutron Scattering" Nanomaterials 9, no. 3: 312. https://doi.org/10.3390/nano9030312
APA StyleSpencer, E. C., Kolesnikov, A. I., Woodfield, B. F., & Ross, N. L. (2019). New Insights about CuO Nanoparticles from Inelastic Neutron Scattering. Nanomaterials, 9(3), 312. https://doi.org/10.3390/nano9030312