Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science
Abstract
:1. Introduction
2. Literature Review
2.1. Cellular (in vitro) Studies
2.2. Animal (In Vivo) Studies
3. Study Evaluations—Krug and Wick and Card and Magnuson
3.1. The Krug and Wick Approach
3.2. The Card and Magnuson Approach
4. Study Evaluation—General Observations
5. Physical-Chemical Measurement and Reporting
6. Study Design Considerations
6.1. In vitro versus in vivo Studies
6.2. Exposure Technique
6.3. Exposure Dose and Duration
6.4. Lack of Dose–Response
6.5. Control Groups
7. What the Studies Tell Us about the Risks of Inhaling Cellulose Nanomaterial in Dust in the Workplace
7.1. Cellular (In Vitro) Assays
7.2. Short-Term Animal Studies
8. Future Research and Recommendations
- Better techniques to detect CNs in different media (e.g., air, water, biological fluids). It is challenging to measure occupational exposure to CNs due to their composition as organic carbohydrate materials. It can be difficult to identify and measure CNs, often present at very low levels, and to distinguish them from background sources of particles in the atmosphere. Detection and characterization of CN in the lung is required to understand biopersistence and clearance kinetics as they relate to any persistent negative responses, such as chronic inflammation.
- More exposure assessments in industrial facilities. Several (unpublished) investigations indicate exposure levels are low in CN production environments. While techniques are not necessarily representative of industrial environments, studies by NIOSH in pilot CN facilities have not measured high levels of particles, and other studies have shown that common engineering control equipment such as fume hoods can effectively remove a large proportion of airborne CN. In one instance, particle counts were lower during the production of paper with CNF when compared to the control paper made without it [52]. Measurement of ambient levels of CNs typical of occupational exposures is critical to establishing appropriate dosing for long-term inhalation studies.
- A long-term inhalation study mimicking realistic exposures. This includes using realistic exposure models (inhalation experiments instead of pharyngeal aspiration) that examine a range of realistic doses (show a dose–response) for different lengths of time, including a timepoint long enough to assess whether there is impairment when exposure occurs over time and whether recovery occurs, to distinguish transient from persistent effects. Control materials need to be included that compare CNs to conventional forms of cellulose to determine if there are any unique hazards associated with CNs or if they behave similarly and at a similar potency to other PSLT dusts. The use of positive and negative controls will also allow comparisons across materials and studies. These types of studies can be expensive but are needed to assess differences between CNs and conventional cellulose and other PSLT dusts.
Author Contributions
Funding
Conflicts of Interest
References
- Shatkin, J.A.; Wegner, T.H.; Bilek, E.T.; Cowie, J. Market projections of cellulose nanomaterial-enabled products—Part 1: Applications. TAPPI J. 2014, 13, 9–16. [Google Scholar]
- Shatkin, J.A.; Kim, B. Cellulose nanomaterials: Life cycle risk assessment, and environmental health and safety roadmap. Environ. Sci. Nano 2015, 2, 477–499. [Google Scholar] [CrossRef]
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). Poorly Soluble Particles/Lung Overload; Technical Report 122; ECETOC: Brussels, Belgium, 2013. [Google Scholar]
- Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Chan, K.J.; Clift, M.J.D.; Cranston, E.D.; Eichhorn, S.J.; et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.L.M.; Lynch, I.; Peijnenburg, W.; Rumble, J.; Klaessig, F.; Marquardt, C.; Rauscher, H.; Puzyn, T.; Purian, R.; Aberg, C. How should the completeness and quality of curated nanomaterial data be evaluated? J. Nanoscale 2016, 8, 9919–9943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warheit, D.B. Hazard and risk assessment strategies for nanoparticle exposures: How far have we come in the past 10 years? F1000Research 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Haase, A.; Lynch, I. Quality in nanosafety—Towards a reliable nanomaterial safety assessment. NanoImpact 2018, 11, 67–68. [Google Scholar] [CrossRef]
- Krug, H.F. The uncertainty with nanosafety: Validity and reliability of published data. Colloids Surf. B Biointerfaces 2018, 172, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Krug, H.F. Nanosafety research—Are we on the right track? Angew. Chem. Int. Ed. Engl. 2014, 53, 12304–12319. [Google Scholar] [CrossRef] [PubMed]
- Krug, H.F.; Wick, P. Nanotoxicology: An interdisciplinary challenge. J. Angew. Chem. Int. Ed. 2011, 50, 1260–1278. [Google Scholar] [CrossRef] [PubMed]
- Card, J.W.; Magnuson, B.A. A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int. J. Toxicol. 2010, 29, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Yanamala, N.; Farcas, M.T.; Hatfield, M.K.; Kisin, E.R.; Kagan, V.E.; Geraci, C.L.; Shvedova, A.A. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Engl. 2014, 2, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Farcas, M.T.; Kisin, E.R.; Menas, A.L.; Gutkin, D.W.; Star, A.; Reiner, R.S.; Yanamala, N.; Savolainen, K.; Shvedova, A.A. Pulmonary exposure to cellulose nanocrystals caused deleterious effects to reproductive system in male mice. J. Toxicol. Environ. Health A 2016, 79, 984–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shvedova, A.A.; Kisin, E.R.; Yanamala, N.; Farcas, M.T.; Menas, A.L.; Williams, A.; Fournier, P.M.; Reynolds, J.S.; Gutkin, D.W.; Star, A.; et al. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part. Fibre Toxicol. 2016, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Catalan, J.; Rydman, E.; Aimonen, K.; Hannukainen, K.S.; Suhonen, S.; Vanhala, E.; Moreno, C.; Meyer, V.; Perez, D.D.; Sneck, A.; et al. Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis 2017, 32, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Ilves, M.; Vilske, S.; Aimonen, K.; Lindberg, H.K.; Pesonen, S.; Wedin, I.; Nuopponen, M.; Vanhala, E.; Hojgaard, C.; Winther, J.R.; et al. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology 2018, 12, 729–746. [Google Scholar] [CrossRef] [PubMed]
- Clift, M.J.; Foster, E.J.; Vanhecke, D.; Studer, D.; Wick, P.; Gehr, P.; Rothen-Rutishauser, B.; Weder, C. Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules 2011, 12, 3666–3673. [Google Scholar] [CrossRef] [PubMed]
- Endes, C.; Schmid, O.; Kinnear, C.; Mueller, S.; Camarero-Espinosa, S.; Vanhecke, D.; Foster, E.J.; Petri-Fink, A.; Rothen-Rutishauser, B.; Weder, C.; et al. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Part. Fibre Toxicol. 2014, 11, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanamala, N.; Kisin, E.R.; Menas, A.L.; Farcas, M.T.; Khaliullin, T.O.; Vogel, U.B.; Shurin, G.V.; Schwegler-Berry, D.; Fournier, P.M.; Star, A.; et al. In vitro toxicity evaluation of lignin-(un)coated cellulose based nanomaterials on human A549 and THP-1 cells. Biomacromolecules 2016, 17, 3464–3473. [Google Scholar] [CrossRef] [PubMed]
- Menas, A.L.; Yanamala, N.; Farcas, M.T.; Russo, M.; Friend, S.; Fournier, P.M.; Star, A.; Iavicoli, I.; Shurin, G.V.; Vogel, U.B.; et al. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation? Chemosphere 2017, 171, 671–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, V.R.; Sanchez-Martinez, C.; Stromme, M.; Ferraz, N. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: Surface chemistry aspect. Part. Fibre Toxicol. 2017, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, B.; Berry, R.; Goguen, R. Commercialization of cellulose nanocrystal (NCC™) production: A business case focusing on the importance of proactive EHS management. In Nanotechnology Environmental Health and Safety, 2nd ed.; Hull, M.S., Bowman, D.M., Eds.; William Andrew Publishing: Oxford, UK, 2014; pp. 225–246. [Google Scholar]
- Park, E.J.; Khaliullin, T.O.; Shurin, M.R.; Kisin, E.R.; Yanamala, N.; Fadeel, B.; Chang, J.; Shvedova, A.A. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J. Immunotoxicol. 2018, 15, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Shatkin, J.A.; Oberdörster, G. Comment on Shvedova et al. (2016), “Gender differences in murine pulmonary responses elicited by cellulose nanocrystals”. Part. Fibre Toxicol. 2016, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency (ECHA). Usage of (Eco)Toxicological Data for Bridging Data Gaps between and Grouping of Nanoforms of the Same Substance—Elements to Consider; ECHA: Helsinki, Finland, 2016. [Google Scholar]
- Arts, J.H.; Hadi, M.; Irfan, M.A.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; et al. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul. Toxicol. Pharmacol. 2015, 71, S1–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oomen, A.G.; Bleeker, E.A.; Bos, P.M.; van Broekhuizen, F.; Gottardo, S.; Groenewold, M.; Hristozov, D.; Hund-Rinke, K.; Irfan, M.A.; Marcomini, A.; et al. Grouping and read-across approaches for risk assessment of nanomaterials. Int. J. Environ. Res. Public Health 2015, 12, 13415–13434. [Google Scholar] [CrossRef] [PubMed]
- Landvik, N.E.; Skaug, V.; Mohr, B.; Verbeek, J.; Zienolddiny, S. Criteria for grouping of manufactured nanomaterials to facilitate hazard and risk assessment, a systematic review of expert opinions. Regul. Toxicol. Pharmacol. 2018, 95, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, H.M.; Park, M.V.; Gosens, I.; De Jong, W.H.; Cassee, F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 2014, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, W.-S.; Duffin, R.; Thielbeer, F.; Bradley, M.; Megson, I.L.; MacNee, W.; Poland, C.A.; Tran, C.L.; Donaldson, K. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol. Sci. 2012, 126, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Jarvholm, B. Natural organic fibers—Health effects. Int. Arch. Occup. Environ. Health 2000, 73, S69–S74. [Google Scholar] [CrossRef] [PubMed]
- Chun, D.T.W.; Chew, V.; Bartlett, K.; Gordon, T.; Jacobs, R.R.; Larsson, B.-M.; Larsson, L.; Lewis, D.M.; Liesivuori, J.; Michel, O.; et al. Preliminary report on the results of the second phase of a round-robin endotoxin assay study using cotton dust. Appl. Occup. Environ. Hyg. 2000, 15, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, H.M.; Oomen, A.G.; Cassee, F.R. Grouping nanomaterials to predict their potential to induce pulmonary inflammation. Toxicol. Appl. Pharmacol. 2016, 299, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.B.; Webb, T.R.; Reed, K.L.; Frerichs, S.; Sayes, C.M. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007, 230, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Camarero-Espinosa, S.; Endes, C.; Mueller, S.; Petri-Fink, A.; Rothen-Rutishauser, B.; Weder, C.; Clift, M.J.D.; Foster, E.J. Elucidating the potential biological impact of cellulose nanocrystals. J. Fibers 2016, 4, 21. [Google Scholar] [CrossRef]
- Schmid, O.; Stoeger, T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 2016, 99, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Warheit, D.B.; Webb, T.R.; Sayes, C.M.; Colvin, V.L.; Reed, K.L. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 2006, 91, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Baisch, B.L.; Corson, N.M.; Wade-Mercer, P.; Gelein, R.; Kennell, A.J.; Oberdorster, G.; Elder, A. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: The effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol. 2014, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Creutzenberg, O.; Koch, W.; Hansen, T.; Schuchardt, S. Comparison of Inhalation and Intratracheal Instillatin as Testing Methods for Characterisation of Granular Biopersistent Particles (GBP); BAuA: Dortmund, Germany, 2018. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Draft Guidance Document on Inhalation Toxicity Testing #39; OECD: Paris, France, 2017. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials; OECD: Paris, France, 2012. [Google Scholar]
- Dunn, K. Overview of NIOSH field studies for the assessment and control of nanocellulose materials. In Proceedings of the International Conference on Nanotechnology for Renewable Materials, Madison, WI, USA, 11–15 June 2018. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Guidance Document on Inhalation Toxicity Studies; OECD: Paris, France, 2009. [Google Scholar]
- Shatkin, J.A.; Ong, K.J.; Beaudrie, C.; Clippinger, A.J.; Hendren, C.O.; Haber, L.T.; Hill, M.; Holden, P.; Kennedy, A.J.; Kim, B.; et al. Advancing risk analysis for nanoscale materials: Report from an international workshop on the role of alternative testing strategies for advancement. Risk Anal. 2016, 36, 1520–1537. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-operation and Development (OECD). Alternative Testing Strategies in Risk Assessment of Manufactured Nanomaterials: Current State of Knowledge and Research Needs to Advance Their Use; OECD: Paris, France, 2016. [Google Scholar]
- Donaldson, K.; Murphy, F.; Schinwald, A.; Duffin, R.; Poland, C.A. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine 2011, 6, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Jeon, S.; Han, Y.; Kim, S.H.; Lee, S.; Yu, I.J.; Song, K.S.; Kang, A.; Yun, W.S.; Kang, S.M.; et al. Threshold rigidity values for the asbestos-like pathogenicity of high-aspect-ratio carbon nanotubes in a mouse pleural inflammation model. ACS Nano 2018, 12, 10867–10879. [Google Scholar] [CrossRef] [PubMed]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; Duling, M.G.; Lawrence, R.B.; Thomas, T.A.; LeBouf, R.F.; Wade, E.E.; Abbas Virji, M. Dermal exposure potential from textiles that contain silver nanoparticles AU. Int. J. Occup. Environ. Health 2014, 20, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Muhle, H.; Bellmann, B.; Ernst, H. Investigation of the durability of cellulose fibres in rat lungs. Ann. Occup. Hyg. 1997, 41, 184–188. [Google Scholar] [CrossRef]
- Schulte, P.A.; Kuempel, E.D.; Drew, N.M. Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials. Regul. Toxicol. Pharmacol. 2018, 95, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Vartiainen, J.; Pöhler, T.; Sirola, K.; Pylkkänen, L.; Alenius, H.; Hokkinen, J.; Tapper, U.; Lahtinen, P.; Kapanen, A.; Putkisto, K.; et al. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. J. Cellul. 2011, 18, 775–786. [Google Scholar] [CrossRef]
In Vivo Studies | In Vivo Studies | ||||
---|---|---|---|---|---|
First Author | Year | Material | First Author | Year | Material |
Ilves | 2018 [16] | cellulose nanofibrils (CNF) | Ilves | 2018 [16] | CNF |
Park | 2018 [23] | CNF, cellulose nanocrystals (CNC) | Menas | 2017 [20] | CNC, CNF |
Catalan | 2017 [15] | CNF | Lopes | 2017 [21] | CNF |
Shvedova | 2016 [14] | CNC | Yanamala | 2016 [19] | CNC, CNF |
Farcas | 2016 [13] | CNC | Endes | 2014 [18] | CNC |
Yanamala | 2014 [12] | CNC | Clift | 2011 [17] | CNC |
O’Connor | 2014 [22] | CNC |
Nanomaterial Characterization Score | Criteria | In Vivo Studies | In Vitro Studies | |||||||||||||||
O’Connor 2014 | Yanamala et al. 2014 | Farcas et al. 2016 | Shvedova et al. 2016 | Catalan et al. 2017 | Park et al. 2018 | Ilves et al. 2018 | TOTAL | % | Clift et al. 2011 | Endes et al. 2014 | Yanamala et al. 2016 | Menas et al. 2017 | Lopes et al. 2017 | Ilves et al. 2018 | TOTAL | % | ||
Chemical composition, purity, impurities | 0 | 1 | 1 | 2 | 0 | 1 | 2 | 7 | 50% | 0 | 1 | 1 | 1 | 1 | 2 | 6 | 50% | |
Particle size and size distribution | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 14 | 100% | 2 | 2 | 2 | 2 | 2 | 2 | 12 | 100% | |
Specific surface | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 14% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0% | |
Morphology (crystalline/amorphous, shape) | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 12 | 86% | 2 | 2 | 0 | 2 | 2 | 2 | 10 | 83% | |
Surface chemistry, coating, functionalization | 1 | 0 | 0 | 1 | 2 | 0 | 1 | 5 | 36% | 0 | 1 | 0 | 0 | 2 | 1 | 4 | 33% | |
Degree of agglomeration/aggregation and particle size distribution under experimental conditions (for example, media with/without proteins) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0% | 0 | 1 | 0 | 0 | 2 | 0 | 3 | 25% | |
Surface reactivity and/or surface load (zeta potential) | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 6 | 43% | 0 | 0 | 0 | 0 | 2 | 2 | 4 | 33% | |
Characterization Score (out of 14) | 7 | 5 | 3 | 9 | 8 | 5 | 9 | 47% | 4 | 7 | 3 | 5 | 11 | 9 | 46% | |||
Study Design Score | Criteria | In vivo studies | In vitro studies | |||||||||||||||
O’Connor 2014 | Yanamala et al. 2014 | Farcas et al. 2016 | Shvedova et al. 2016 | Catalan et al. 2017 | Park et al. 2018 | Ilves et al. 2018 | TOTAL | % | Clift et al. 2011 | Endes et al. 2014 | Yanamala et al. 2016 | Menas et al. 2017 | Lopes et al. 2017 | Ilves et al. 2018 | TOTAL | % | ||
Applied concentration/dose, to be given in more than one unit. | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 17% | 0 | 2 | 2 | 2 | 0 | 2 | 8 | 67% | |
Doses should be clearly marked as “overload” or “non-overload”. | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8% | NA | NA | NA | NA | NA | NA | |||
At least two different tests for each biological end point. | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 8 | 67% | 0 | 0 | 1 | 1 | 1 | 1 | 4 | 33% | |
Study should contain data on the dose–effect relationship of the acute toxic effects. | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 8% | 1 | 1 | 0 | 1 | 1 | 1 | 5 | 42% | |
Interference of the nanomaterials with the test system. | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 8% | 2 | 0 | 0 | 0 | 0 | 1 | 3 | 25% | |
Evaluation that contaminants or solvents not responsible for observed toxicity | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 17% | 0 | 2 | 1 | 1 | 1 | 2 | 7 | 58% | |
Are doses relevant to human exposures? | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8% | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 8% | |
Positive Control | 0 | 2 | 0 | 0 | 2 | 2 | 2 | 8 | 67% | 2 | 2 | 2 | 2 | 2 | 2 | 12 | 100% | |
Negative Control | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 4 | 33% | 2 | 0 | 0 | 1 | 2 | 2 | 7 | 58% | |
Vehicle Control | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 6 | 50% | 2 | 2 | 0 | 0 | 0 | 2 | 6 | 50% | |
Study Design Score (out of 20/18) | 1 | 3 | 1 | 1 | 10 | 7 | 11 | 28% | 9 | 9 | 6 | 9 | 7 | 13 | 49% |
Nanomaterial Characterization Score | Criteria | In Vivo Studies | In Vitro Studies | Total | % | |||||||||||
O’Connor 2014 | Yanamala 2014 | Farcas 2016 | Shvedova 2016 | Catalán 2017 | Park 2018 | Ilves 2018 | Clift 2011 | Endes 2014 | Yanamala 2016 | Menas 2017 | Lopes 2017 | Ilves 2018 | ||||
1. Agglomeration and/or aggregation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 15% | |
2. Chemical composition | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 4 | 31% | |
3. Crystal structure/crystallinity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8% | |
4. Particle size/size distribution | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 13 | 100% | |
5. Purity | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 4 | 31% | |
6. Shape | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 92% | |
7. Surface area | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8% | |
8. Surface charge | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 6 | 46% | |
9. Surface chemistry (including composition and reactivity) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8% | |
10. Characterization completed in relevant experimental media | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 15% | |
Total | 3 | 2 | 1 | 5 | 3 | 2 | 5 | 2 | 7 | 2 | 2 | 7 | 5 | 35% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ede, J.D.; Ong, K.J.; Goergen, M.; Rudie, A.; Pomeroy-Carter, C.A.; Shatkin, J.A. Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science. Nanomaterials 2019, 9, 337. https://doi.org/10.3390/nano9030337
Ede JD, Ong KJ, Goergen M, Rudie A, Pomeroy-Carter CA, Shatkin JA. Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science. Nanomaterials. 2019; 9(3):337. https://doi.org/10.3390/nano9030337
Chicago/Turabian StyleEde, James D., Kimberly J. Ong, Michael Goergen, Alan Rudie, Cassidy A. Pomeroy-Carter, and Jo Anne Shatkin. 2019. "Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science" Nanomaterials 9, no. 3: 337. https://doi.org/10.3390/nano9030337
APA StyleEde, J. D., Ong, K. J., Goergen, M., Rudie, A., Pomeroy-Carter, C. A., & Shatkin, J. A. (2019). Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science. Nanomaterials, 9(3), 337. https://doi.org/10.3390/nano9030337