Self-Powered Well-Aligned P(VDF-TrFE) Piezoelectric Nanofiber Nanogenerator for Modulating an Exact Electrical Stimulation and Enhancing the Proliferation of Preosteoblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrospinning of Nanofiber Membranes (NFMs)
2.2. Characterization and Measurements of NFMs
2.3. Measurements and Stimulation of Piezoelectric Nanofiber Nanogenerators (NGs)
2.4. Cell Culture
2.5. Cell Alignment Quantification
2.6. Piezoelectric Stimulation and Cell Proliferation Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Morphology and Characterization of NFMs
3.2. Effect of Postprocessing on NFM Piezoelectric Properties
3.3. Effect of Mechanical Stimulus on Electrical Performances
3.4. Theoretical Modeling of NG-Cell Interaction
3.5. Cell Morphology on NG without Piezoelectric Stimulaton
3.6. Effect of Piezoelectric Stimulation Induced by NG on MC3T3-E1 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Zhao, M.; Song, B.; Pu, J.; Wada, T.; Reid, B.; Tai, G.; Wang, F.; Guo, A.; Walczysko, P.; Gu, Y.; et al. Electrical Signals Control Wound Healing through Phosphatidylinositol-3-OH Kinase-Gamma and PTEN. Nature 2006, 442, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M. Electrical Fields in Wound Healing—An Overriding Signal That Directs Cell Migration. Semin. Cell Dev. Biol. 2009, 20, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Sundelacruz, S.; Li, C.; Choi, Y.J.; Levin, M.; Kaplan, D.L. Bioelectric Modulation of Wound Healing in A 3D in Vitro Model of Tissue-Engineered Bone. Biomaterials 2013, 34, 6695–6705. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, L.; McCaig, C.D.; Robinson, K.R. The Direction of Growth of Differentiating Neurones and Myoblasts From Frog Embryos in An Applied Electric Field. J. Physiol. 1981, 314, 14. [Google Scholar] [CrossRef]
- Zheng, Q.; Zou, Y.; Zhang, Y.; Liu, Z.; Shi, B.; Wang, X.; Jin, Y.; Ouyang, H.; Li, Z.; Wang, Z.L. Biodegradable Triboelectric Nanogenerator as A Life-Time Designed Implantable Power Source. Sci. Adv. 2016, 2, e1501478. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cho, K.W.; Cho, H.R.; Wang, L.; Park, S.Y.; Lee, S.E.; Hyeon, T.; Lu, N.; Choi, S.H.; Kim, D.H. Stretchable and Transparent Biointerface Using Cell-Sheet-Graphene Hybrid For Electrophysiology and Therapy of Skeletal Muscle. Adv. Funct. Mater. 2016, 26, 3207–3217. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeon, W.Y.; Kim, H.H.; Lee, E.J.; Kim, H.W. Electrical Stimulation by Enzymatic Biofuel Cell to Promote Proliferation, Migration and Differentiation of Muscle Precursor Cells. Biomaterials 2015, 53, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, X.; Yu, X.; Wang, S.; Qiu, J.; Tang, W.; Li, L.; Liu, H.; Wang, Z.L. Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Microfibers. ACS Nano 2016, 10, 5086–5095. [Google Scholar] [CrossRef] [PubMed]
- Tandon, N.; Cannizzaro, C.; Chao, P.H.G.; Maidhof, R.; Marsano, A.; Au, H.T.H.; Radisic, M.; Vunjak-Novakovic, G. Electrical Stimulation Systems for Cardiac Tissue Engineering. Nat. Protoc. 2009, 4, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cui, H.; Zhuang, X.; Wei, Y.; Chen, X. Electrospinning of Aniline Pentamer-Graft-Gelatin/PLLA Nanofibers for Bone Tissue Engineering. Acta Biomater. 2014, 10, 5074–5080. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Valero-Cabre, A.L. A Noninvasive Human Brain Stimulation. Ann. Rev. Biomed. Eng. 2007, 9, 527–565. [Google Scholar] [CrossRef] [PubMed]
- Fukada, E. Piezoelectric Properties of Biological Polymers. Q. Rev. Biophys. 2009, 16, 59. [Google Scholar] [CrossRef]
- Rajabi, A.H.; Jaffe, M.; Arinzeh, T.L. Piezoelectric Materials for Tissue Regeneration: A Review. Acta Biomater. 2015, 24, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Shimono, T.; Matsunaga, S.; Fukada, E.; Hattori, T.; Shikinami, Y. The Effects of Piezoelectric Poly-l-lactic Acid Films in Promoting Ossification in Vivo. In Vivo 1996, 10, 471–476. [Google Scholar] [PubMed]
- Ribeiro, C.; Sencadas, V.; Correia, D.M.; Lanceros-Mendez, S. Piezoelectric Polymers as Biomaterials for Tissue Engineering Applications. Colloids Surface B 2015, 136, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, A.; Peng, M.; Ming, S.; Wei, L.; Yang, Z.; Zhai, J. Improvement in Piezoelectric Performance of ZnO Nanogenerator by A Combination of Chemical Doping and Interfacial Modification. J. Phys.Chem. C 2016, 120, 6971–6977. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Liu, J.; Xiong, J.; Liu, J.; Zhang, K.; Liu, Y.; Peng, M.; Yu, A.; Zhang, A. Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO Based Flexible Nanogenerators. ACS Appl. Mater. Int. 2015, 8, 1381. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Iglesias, M.; de Waal, B.F.; Gorbunov, A.V.; Palmans, A.R.; Kemerink, M.; Meijer, E.W. A Versatile Method for The Preparation of Ferroelectric Supramolecular Materials via Radical End-Functionalization of Vinylidene Fluoride Oligomers. J. Am. Chem. Soc. 2016, 138, 6217–6223. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Purahmad, M.; Ray, S.S.; Yarin, A.L.; Dutta, M. Investigation of PVDF-TrFE Nanofibers for Energy Harvesting. In Proceedings of the Nanotechnology Materials and Devices Conference, Waikiki Beach, HI, USA, 9–12 October 2012; pp. 21–24. [Google Scholar]
- Prateek, T.V.; Gupta, R.K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, F.; Yin, G.; Wang, Y.; Liu, B.; Dong, M. Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Sensors 2018, 18, 330. [Google Scholar] [CrossRef] [PubMed]
- Reneker, D.H.; Yarin, A.L.; Fong, H.; Koombhongse, S. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning. J. Appl. Phys. 2000, 87, 4531–4547. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L. Electrospinning Jets and Polymer Nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef]
- Saeid, L.; Claire, G.; Ata, Y.; Kumar, T.V.; Yazdani, N.H. Electrospun Piezoelectric Polymer Nanofiber Layers for Enabling in Situ Measurement in High-Performance Composite Laminates. ACS Omega 2018, 3, 8891–8902. [Google Scholar]
- Kang, S.B.; Won, S.H.; Im, M.J.; Kim, C.U.; Park, W.I.; Baik, J.M.; Choi, K.J. Enhanced Piezoresponse of Highly Aligned Electrospun Poly(vinylidene fluoride) Nanofibers. Nanotechnology 2017, 28, 395402. [Google Scholar] [CrossRef] [PubMed]
- Lovinger, A.J. Ferroelectric Polymers. Science 1983, 220, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Peng, M.; Yu, A.; Liu, J.; Ming, S.; Yang, Z.; Zhai, J. Interface Engineering on p-CuI/n-ZnO Heterojunction for Enhancing Piezoelectric and Piezo-Phototronic Performance. Nano Energy 2016, 26, 417–424. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, J.; Wang, Z.L. Piezo-Phototronic Matrix via A Nanowire Array. Small 2017, 13, 1702377. [Google Scholar] [CrossRef] [PubMed]
- Miculescu, F.; Maidaniuc, A.; Voicu, S.I.; Thakur, V.K.; Stan, G.E.; Ciocan, L.T. Progress in Hydroxyapatite-Starch Based Sustainable Biomaterials for Biomedical Bone Substitution Applications. ACS Sustain. Chem. Eng. 2017, 5, 8491–8512. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, X.; Lu, T.J.; Xu, F. Recent Advances in Electrospun Nanofibrous Scaffolds for Cardiac Tissue Engineering. Adv. Funct. Mater. 2015, 25, 5726–5738. [Google Scholar] [CrossRef]
- Fuh, Y.K.; Wang, B.S. Near Field Sequentially Electrospun Three-Dimensional Piezoelectric Fibers Arrays for Self-Powered Sensors of Human Gesture Recognition. Nano Energy 2016, 30, 677–683. [Google Scholar] [CrossRef]
- Lee, S.; Yun, S.; Park, K.I.; Jang, J.H. Sliding Fibers: Slidable, Injectable, and Gel-Like Electrospun Nanofibers as Versatile Cell Carriers. ACS Nano 2016, 10, 3282–3294. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.N.; Kim, H.J.; Lee, Y.J.; Heo, M.; Lee, S.J.; Lee, D.; Do, S.H.; Lee, S.H.; Kwon, I.K. Flexible and Highly Biocompatible Nanofiber-Based Electrodes for Neural Surface Interfacing. ACS Nano 2017, 11, 2961–2971. [Google Scholar] [CrossRef] [PubMed]
- Kai, D.; Prabhakaran, M.P.; Jin, G.; Ramakrishna, S. Guided Orientation of Cardiomyocytes on Electrospun Aligned Nanofibers for Cardiac Tissue Engineering. J. Biomed. Mater. Res. B. 2011, 98, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Hitscherich, P.; Wu, S.; Gordan, R.; Xie, L.H.; Arinzeh, T.; Lee, E.J. The Effect of PVDF-TrFE Scaffolds on Stem Cell Derived Cardiovascular Cells. Biotechnol. Bioeng. 2016, 113, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.G.; Ceseracciu, L.; Marino, A.; Labardi, M.; Marras, S.; Pignatelli, F.; Bruschini, L.; Mattoli, V.; Ciofani, G. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells. Adv. Healthc. Mater. 2016, 5, 1808–1820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, C.; Lin, Y.; Hu, P.; Shen, Y.; Wang, K.; Meng, S.; Chai, Y.; Dai, X.; Liu, X.; et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano 2016, 10, 7279–7286. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Liu, Z.; Hu, M.; Wang, C.; Zhang, X.; Shi, B.; Fan, Y.; Cui, Y.; Li, Z.; Ren, K. Piezoelectric Nanofibrous Scaffolds as in Vivo Energy Harvesters for Modifying Fibroblast Alignment and Proliferation in Wound Healing. Nano Energy 2018, 43, 63–71. [Google Scholar] [CrossRef]
- Ren, K.; Liu, Y.; Hofmann, H.; Zhang, Q.M. Blottman, An Active Energy Harvesting Scheme with An Electroactive Polymer. Appl. Phys. Lett. 2007, 91, 132910. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to Conduction and Excitation in Nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Rinzel, J. The Hodgkin—Huxley Model; Springer: New York, NY, USA, 1998. [Google Scholar]
- Ayres, C.E.; Jha, B.S.; Meredith, H.; Bowman, J.R.; Bowlin, G.L.; Henderson, S.C.; Simpson, D.G. Measuring Fiber Alignment in Electrospun Scaffolds: A User’s Guide to The 2D Fast Fourier Transform Approach. J. Biomater. Sci.-Polym. E 2008, 19, 603–621. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.M.M.; Pascau, J. Image Processing with ImageJ; Packt Pub: Birmingham, UK, 2016. [Google Scholar]
- Tseng, L.F.; Mather, P.T.; Henderson, J.H. Shape-Memory-Actuated Change in Scaffold Fiber Alignment Directs Stem Cell Morphology. Acta Biomater. 2013, 9, 8790–8801. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, S.M.; Wang, Z.; Than, L.; Sreenivasulu, G.; Zeng, X. Poly (vinylidene fluoride) / Poly (acrylonitrile)-Based Superior Hydrophobic Piezoelectric Solid Derived by Aligned Carbon Nanotube in Electrospinning: Fabrication, the Phase Conversion and Surface Energy. RSC Adv. 2015, 5, 76383–76391. [Google Scholar] [CrossRef] [PubMed]
- Minwei, Y.; Yun, W.; Leonard, T.; Cecilia, C.; Ho, K.S. Improving Nanofiber Membrane Characteristics and Membrane Distillation Performance of Heat-Pressed Membranes via Annealing Post-Treatment. Appl. Sci. 2017, 7, 78. [Google Scholar] [Green Version]
- Papadopoulou, S.K.; Tsioptsias, C.; Pavlou, A.; Kaderides, K.; Sotiriou, S.; Panayiotou, C. Superhydrophobic Surfaces from Hydrophobic or Hydrophilic Polymers via Nanophase Separation Or Electrospinning/Electrospraying. Colloids Surface A 2011, 387, 71–78. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High Performance Piezoelectric Devices Based on Aligned Arrays of Nanofibers of Poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef] [PubMed]
- Koga, K.; Nakano, N.; Hattori, T.; Ohigashi, H. Crystallization, Field-Induced Phase Transformation, Thermally Induced Phase Transition, and Piezoelectric Activity in P(vinylidene fluoride-TrFE) Copolymers with High Molar Content of Vinylidene Fluoride. J. Appl. Phys. 1990, 67, 965–974. [Google Scholar] [CrossRef]
- Bellet-Amalric, E.; Legrand, J.F. Crystalline Structures and Phase Transition of The Ferroelectric P(VDF-TrFE) Copolymers, A Neutron Diffraction Study. Eur. Phys. J. B 1998, 3, 225–236. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, M.C.; Linares, A.; Martin-Fabiani, I.; Hernandez, J.J.; Soccio, M.; Rueda, D.R.; Ezquerra, T.A.; Reynolds, M. Understanding Crystallization Features of P(VDF-TrFE) Copolymers Under Confinement to Optimize Ferroelectricity in Nanostructures. Nanoscale 2013, 5, 6006–6012. [Google Scholar] [CrossRef] [PubMed]
- Salimi, A.; Yousefi, A.A. FTIR Studies of Beta-Phase Crystal Formation in Stretched PVDF Films. Polym. Test. 2003, 22, 699–704. [Google Scholar] [CrossRef]
- Xu, Z.; Baniasadi, M.; Moreno, S.; Cai, J.; Naraghi, M.; Minary-Jolandan, M. Evolution of Electromechanical and Morphological Properties of Piezoelectric Thin Films with Thermomechanical Processing. Polymer 2016, 106, 62–71. [Google Scholar] [CrossRef]
- Murillo, G.; Blanquer, A.; Vargas-Estevez, C.; Barrios, L.; Ibáñez, E.; Nogués, C.; Esteve, J. Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity. Adv. Mater. 2017, 29, 1605048. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; Mc Graw Hill Medical: New York, NY, USA, 2013; pp. 139–140. [Google Scholar]
- Aishwarya, N.; Jennifer, H. Hodgkin–Huxley Neuron and FPAA Dynamics. IEEE Trans. Biomed. Circ. Syst. 2018, 1–9. [Google Scholar]
- Frankenhaeuser, B.; Hodgkin, A.L. The Action of Calcium on The Electrical Properties of Squid Axons. J. Physiol. 1957, 137, 218–244. [Google Scholar] [CrossRef] [PubMed]
- Sydlik, S.A.; Jhunjhunwala, S.; Webber, M.J.; Anderson, D.G.; Langer, R. In Vivo Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano 2015, 9, 3866–3874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beachley, V.; Katsanevakis, E.; Zhang, N.; Wen, X. Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Yang, F.; Murugan, R.; Wang, S. Electrospinning of Nano/Micro Scale Poly (L-lactic acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials 2005, 26, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F.A.; Zhang, M.Q. Electrospun Chitosan-Based Nanofibers and Their Cellular Compatibility. Biomaterials 2005, 26, 6176–6184. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Su, Y.; Mo, X.; He, C.L.; Wang, H.S.; Ikada, Y. Biocompatibility, Alignment Degree and Mechanical Properties of an Electrospun Chitosan–P(LLA-CL) Fibrous Scaffold. J. Biomater. Sci. Polym. Ed. 2009, 20, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
Sample | Ec (MV/m) | Ps (mC/m2) | Pr (mC/m2) | d33 (pC/N) | d31 (pC/N) | R2 |
---|---|---|---|---|---|---|
U-NFM | 60.9 | 37.9 | 17.1 | 0 | 0.03 | 0.3496 |
A-NFM | 65.2 | 43.1 | 26.9 | 0 | 0.07 | 0.9948 |
P-NFM | 88.1 | 44.1 | 32.6 | −31 | 22.88 | 0.9997 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Hu, M.; Zhou, L.; Qiang, X. Self-Powered Well-Aligned P(VDF-TrFE) Piezoelectric Nanofiber Nanogenerator for Modulating an Exact Electrical Stimulation and Enhancing the Proliferation of Preosteoblasts. Nanomaterials 2019, 9, 349. https://doi.org/10.3390/nano9030349
Wang A, Hu M, Zhou L, Qiang X. Self-Powered Well-Aligned P(VDF-TrFE) Piezoelectric Nanofiber Nanogenerator for Modulating an Exact Electrical Stimulation and Enhancing the Proliferation of Preosteoblasts. Nanomaterials. 2019; 9(3):349. https://doi.org/10.3390/nano9030349
Chicago/Turabian StyleWang, Aochen, Ming Hu, Liwei Zhou, and Xiaoyong Qiang. 2019. "Self-Powered Well-Aligned P(VDF-TrFE) Piezoelectric Nanofiber Nanogenerator for Modulating an Exact Electrical Stimulation and Enhancing the Proliferation of Preosteoblasts" Nanomaterials 9, no. 3: 349. https://doi.org/10.3390/nano9030349
APA StyleWang, A., Hu, M., Zhou, L., & Qiang, X. (2019). Self-Powered Well-Aligned P(VDF-TrFE) Piezoelectric Nanofiber Nanogenerator for Modulating an Exact Electrical Stimulation and Enhancing the Proliferation of Preosteoblasts. Nanomaterials, 9(3), 349. https://doi.org/10.3390/nano9030349