Pd Nanocatalyst Adorning Coral Reef Nanocomposite for the Synthesis of Nitriles: Utility of Cucurbita pepo Leaf Extract as a Stabilizing and Reducing Agent
Abstract
:1. Introduction
2. Experimental
2.1. Apparatus and Analysis
2.2. Preparation of the Cucurbita Pepo Leaf Extract
2.3. Bioreduction of Pd Ions and Synthesis of Pd NPs
2.4. Biological Preparation of Pd/Coral Reef Nanocomposite Using Cucurbita Pepo Leaf Extract
2.5. General Procedure for Synthesis of Aryl Nitriles
3. Result and Discussion
3.1. Characterization of Cucurbita Pepo Leaf Extract and Biosynthesized Pd Nanoparticle
3.2. Characterization of Pd/Coral Reef Nanocomposite
3.3. Catalytic Performance of the Pd/Coral Reef Nanocomposite in the Cyanation of Aryl Halides
3.4. Reusability and Stability of Catalyst
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substance: Synthesis, Patents, Applications, 4th ed.; Georg Thieme: Stuttgart, Germany, 2001. [Google Scholar]
- Larock, R.C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations; Wiley-VCH: Weinheim, Germany, 1989; pp. 819–995. [Google Scholar]
- Grundmann, C. Houben-Weyl: Methoden der Organischen Chemie, 4th ed.; Falbe, J., Ed.; Thieme: Stuttgart, Germany, 1985; Volume E5, p. 1313. [Google Scholar]
- Anbarasan, P.; Schareina, T.; Beller, M. Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: Synthesis of benzonitriles. Chem. Soc. Rev. 2011, 40, 5049–5067. [Google Scholar] [CrossRef]
- Sandmeyer, T. Ueber die Ersetzung der Amidgruppe durch Chlor in den aromatischen Substanzen. Ber. Dtsch. Chem. Ges. 1884, 17, 2650–2653. [Google Scholar] [CrossRef]
- Hodgson, H.H. The Sandmeyer reaction. Chem. Rev. 1947, 40, 251–277. [Google Scholar] [CrossRef] [PubMed]
- Rosenmund, K.W.; Struck, E. Das am Ringkohlenstoff gebundene Halogen und sein Ersatz durch andere Substituenten. I. Mitteilung: Ersatz des Halogens durch die Carboxylgruppe. Ber. Dtsch. Chem. Ges. 1919, 52, 1749–1756. [Google Scholar] [CrossRef]
- Von Braun, J.; Manz, G. Fluoranthen und seine Derivate. III. Mitteilung, in Justus. Liebigs Ann. Chem. 1931, 488, 111–126. [Google Scholar] [CrossRef]
- Ellis, G.P.; Romney-Alexander, T.M. Cyanation of aromatic halides. Chem. Rev. 1987, 87, 779–794. [Google Scholar] [CrossRef]
- Martin, A.; Kalevaru, N.V.; Lücke, B.; Sans, J. Eco-friendly synthesis of p-nitrobenzonitrile by heterogeneously catalysed gas phase ammoxidation. Green Chem. 2002, 4, 481–485. [Google Scholar] [CrossRef]
- Rombi, E.; Ferino, I.; Monaci, R.; Picciau, C.; Solinas, V.; Buzzoni, R. Toluene ammoxidation on α-Fe2O3-based catalysts. Appl. Catal. A. Gen. 2004, 266, 73–79. [Google Scholar] [CrossRef]
- Lücke, B.; Narayana, K.V.; Martin, A.; Jähnisch, K. Oxidation and ammoxidation of aromatics. Adv. Synth. Catal. 2004, 346, 1407–1424. [Google Scholar] [CrossRef]
- Takagi, K.; Okamoto, T.; Sakakibara, Y.; Oka, S. Palladium(II) catalyzed synthesis of aryl cyanides from aryl halide. Chem. Lett. 1973, 2, 471–474. [Google Scholar] [CrossRef]
- Friedman, L.; Shechter, H. Preparation of nitriles from halides and sodium cyanide. An advantageous nucleophilic displacement in dimethyl sulfoxide. J. Org. Chem. 1960, 25, 877–879. [Google Scholar] [CrossRef]
- Wu, J.X.; Beck, B.; Ren, R.X. Catalytic Rosenmund-von Braun reaction in halide-based ionic liquids. Tetrahedron Lett. 2002, 43, 387–389. [Google Scholar] [CrossRef]
- Zanon, J.; Klapars, A.; Buchwald, S.L. Copper-catalyzed domino halide exchange-cyanation of aryl bromides. J. Am. Chem. Soc. 2003, 125, 2890–2891. [Google Scholar] [CrossRef]
- Arvela, R.K.; Leadbeater, N.E. Rapid, easy cyanation of aryl bromides and chlorides using nickel salts in conjunction with microwave promotion. J. Org. Chem. 2003, 68, 9122–9125. [Google Scholar] [CrossRef]
- Ushkov, A.V.; Grushin, V.V. Rational catalysis design on the basis of mechanistic understanding: Highly efficient Pd-catalyzed cyanation of aryl bromides with NaCN in recyclable solvents. J. Am. Chem. Soc. 2011, 133, 10999–11005. [Google Scholar] [CrossRef]
- Anderson, B.A.; Bell, E.C.; Ginah, F.O.; Harn, N.K.; Pagh, L.M.; Wepsie, J.P. Cooperative catalyst effects in palladium-mediated cyanation reactions of aryl halides and triflates. J. Org. Chem. 1998, 63, 8224–8228. [Google Scholar] [CrossRef]
- Sundermeier, M.; Mutyala, S.; Zapf, A.; Spannenberg, A.; Beller, M. A convenient and efficient procedure for the palladium-catalyzed cyanation of aryl halides using trimethylsilylcyanide. J. Organomet. Chem. 2003, 684, 50–55. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.S.; Petrovskii, P.V. Catalytic sandmeyer cyanation as a synthetic pathway to aryl nitriles. J. Organomet. Chem. 2004, 689, 3810–3812. [Google Scholar] [CrossRef]
- Schareina, T.; Zapf, A.; Beller, M. Improving palladium-catalyzed cyanation of aryl halides: Development of a state-of-the-art methodology using potassium hexacyanoferrate(II) as cyanating agent. J. Organomet. Chem. 2004, 689, 4576–4583. [Google Scholar] [CrossRef]
- Yang, C.; Williams, J.M. Palladium-catalyzed cyanation of aryl bromides promoted by low-level organotin compounds. Org. Lett. 2004, 6, 2837–2840. [Google Scholar] [CrossRef]
- Kubota, H.; Rice, K.C. Palladium-catalyzed cyanation of hindered, electron-rich aryl triflates by zinc cyanide. Tetrahedron Lett. 1998, 39, 2907–2910. [Google Scholar] [CrossRef]
- Alterman, M.; Hallberg, A. Fast microwave-assisted preparation of aryl and vinyl nitriles and the corresponding tetrazoles from organo-halides. J. Org. Chem. 2000, 65, 7984–7989. [Google Scholar] [CrossRef]
- Jin, F.; Confalone, P.N. Palladium-catalyzed cyanation reactions of aryl chlorides. Tetrahedron Lett. 2000, 41, 3271–3273. [Google Scholar] [CrossRef]
- Ramnauth, J.; Bhardwaj, N.; Renton, P.; Rakhit, S.; Maddaford, S.P. The room-temperature palladium-catalyzed cyanation of aryl bromides and iodides with tri-t-butylphosphine as ligand. Synlett 2003, 2237–2239. [Google Scholar] [CrossRef]
- Schareina, T.; Zapf, A.; Beller, M. Potassium hexacyanoferrate(II)-a new cyanating agent for the palladium-catalyzed cyanation of aryl halides. Chem. Commun. 2004, 12, 1388–1389. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, S.; Fei, H.; Cheng, J.; Chen, F. Copper-catalyzed cyanation of arylboronic acids using DDQ as cyanide source. Synlett 2012, 23, 2247–2250. [Google Scholar]
- Li, J.; Xu, W.; Ding, J.; Lee, K.-H. The application of NCTS (N-cyano-N-phenyl-p-toluenesulfonamide) in palladium-catalyzed cyanation of arenediazonium tetrafluoroborates and aryl halides. Tetrahedron Lett. 2016, 57, 1205–1209. [Google Scholar] [CrossRef]
- Zheng, S.; Yu, C.; Shen, Z. Ethyl cyanoacetate: A new cyanating agent for the palladium-catalyzed cyanation of aryl halides. Org. Lett. 2012, 14, 3644–3647. [Google Scholar] [CrossRef] [PubMed]
- Sundermeier, M.; Zapf, A.; Beller, M.; Sans, J. A new palladium catalyst system for the cyanation of aryl chlorides. Tetrahedron Lett. 2001, 42, 6707–6710. [Google Scholar] [CrossRef]
- Yeung, P.Y.; So, C.M.; Lau, C.P.; Kwong, F.Y. A mild and efficient palladium-catalyzed cyanation of aryl chlorides with K4[Fe(CN)6]. Org. Lett. 2011, 13, 648–651. [Google Scholar] [CrossRef]
- Yeung, P.Y.; Tsang, C.P.; Kwong, F.Y. Efficient cyanation of aryl bromides with K4[Fe(CN)6] catalyzed by a palladium-indolylphosphine complex. Tetrahedron Lett. 2011, 52, 7038–7041. [Google Scholar] [CrossRef]
- Yan, G.; Kuang, C.; Zhang, Y.; Wang, J. Palladium-catalyzed direct cyanation of indoles with K4[Fe(CN)6]. Org. Lett. 2010, 12, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Yang, D.; Wang, W.; Luo, F.; Cheng, J. Chelation-assisted palladium-catalyzed cascade bromination/cyanation reaction of 2-arylpyridine and 1-arylpyrazole C-H bonds. J. Org. Chem. 2009, 74, 9470–9474. [Google Scholar] [CrossRef]
- Rosi, N.L.; Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, M.; Xia, Y. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586. [Google Scholar] [CrossRef]
- Alkilany, A.M.; Lohse, S.E.; Murphy, C.J. The gold standard: Gold nanoparticle libraries to understand the nano-bio interface. Acc. Chem. Res. 2013, 46, 650–661. [Google Scholar] [CrossRef]
- Saleh, R.; Djaja, N.F. Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 581–590. [Google Scholar] [CrossRef]
- Huang, X.; Wu, H.; Pu, S.; Zhang, W.; Liao, X.; Shi, B. One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chem. 2011, 13, 950–957. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F.; Yan, Q.; Chen, P.; Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113, 10842–10846. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Atarod, M.; Sajadi, S.M. Biosynthesis, characterization and catalytic activity of Cu/RGO/Fe3O4 for direct cyanation of aldehydes with K4[Fe(CN)6]. J. Colloid Interface Sci. 2017, 486, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Atarod, M.; Nasrollahzadeh, M.; Sajadi, S.M. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci. 2016, 462, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Atarod, M.; Sajadi, S.M. Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: A highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Appl. Surf. Sci. 2016, 364, 636–644. [Google Scholar] [CrossRef]
- Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. [Google Scholar] [CrossRef]
- Bordbar, M.; Alimohammadi, T.; Khoshnevisan, B.; Khodadadi, B.; Yeganeh Faal, A. Preparation of MWCNT/TiO2-Co nanocomposite electrode by electrophoretic deposition and electrochemical study of hydrogen storage. Int. J. Hydrog. Energy 2015, 40, 9613–9620. [Google Scholar] [CrossRef]
- Smith, B.D. The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 1997, 276, 932–934. [Google Scholar] [CrossRef]
- Wang, X.L.; Liu, J.; Chen, Z.H.B.; Gao, F.; Liu, J.X.; Wang, X.L. Preliminary study on pharmacologically effect of Curcurbita pepo cv Dayanggua. J. Tradit. Chin. Vet. Med. 2001, 20, 6–9. [Google Scholar]
- Jiang, Z.; Du, Q. Glucose-lowering activity of novel tetrasaccharide glyceroglycolipids from the fruits of Cucurbita moschata. Bioorg. Med. Chem. Lett. 2011, 21, 1001–1003. [Google Scholar] [CrossRef]
- Dabaghian, F.H.; Kamalinejad, M.; Shojaei, S.; Abdollahi Fard, M. Presenting antidiabetic plants in Iranian traditional medicine. J. Diabetes Endocrinol. 2012, 3, 70–76. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Nomikos, T.; Fragopoulou, E.; Antonopoulou, S. Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Res. Int. 2009, 142, 641–646. [Google Scholar] [CrossRef]
- Nawirska-Olszanska, A.; Kita, A.; Biesiada, A.; Sokol Letowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Available online: https://commons.wikimedia.org/wiki/File:Cucurbita_pepo_ssp._pepo_convar._giromontiina_02.JPG (accessed on 5 September 2009).
- Varma, R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012, 1, 123–128. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Varma, R.S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008, 10, 859–862. [Google Scholar] [CrossRef]
- Hebbalalu, D.; Lalley, J.; Nadagouda, M.N.; Varma, R.S. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain. Chem. Eng. 2013, 1, 703–712. [Google Scholar] [CrossRef]
- Iyanna, N.; Lalley, J.; Han, C.; Dionysiou, D.D.; Varma, R.S.; Nadagouda, M.N. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain. Chem. Eng. 2014, 2, 1717–1723. [Google Scholar]
- Kharissova, O.V.; Dias, H.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M. The greener synthesis of nanoparticles. Trends Biotechnol. 2013, 31, 240–248. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Maham, M. Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki-Miyaura coupling in water. J. Mol. Catal. A Chem. 2015, 396, 297–303. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M. Pd/CuO nanoparticles as a highly effective catalyst for the cyanation of aryl halides under ligand-free conditions. Tetrahedron Lett. 2016, 57, 337–339. [Google Scholar] [CrossRef]
- Wen, Q.; Jin, J.; Zhang, L.; Luo, Y.; Lu, P.; Wang, Y. Copper-mediated cyanation reactions. Tetrahedron Lett. 2014, 55, 1271–1280. [Google Scholar] [CrossRef]
- Sawant, D.N.; Bhanage, B.M. Pd(OAc)2/DPPF-catalysed microwave-assisted cyanide-free synthesis of aryl nitriles. J. Chem. Sci. 2014, 126, 319–324. [Google Scholar] [CrossRef]
- Rokade, B.V.; Malekar, S.K.; Ramaiah Prabhu, K. A novel oxidative transformation of alcohols to nitriles: An efficient utility of azides as a nitrogen source. Chem. Commun. 2012, 48, 5506–5508. [Google Scholar] [CrossRef]
- Tao, C.; Liu, F.; Zhu, Y.; Liu, W.; Cao, Z. Copper-catalyzed aerobic oxidative synthesis of aryl nitriles from benzylic alcohols and aqueous ammonia. Org. Biomol. Chem. 2013, 11, 3349–3354. [Google Scholar] [CrossRef]
- Khemnar, A.B.; Bhanage, B.M. Copper catalyzed nitrile synthesis from aryl halides using formamide as a nitrile source. RSC Adv. 2014, 4, 3405–13408. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, P.; Wang, Y. Cu(NO3)2.3H2O-mediated cyanation of aryl iodides and bromides using DMF as a single surrogate of cyanide. Chem. Commun. 2015, 51, 2840–2843. [Google Scholar] [CrossRef]
- Luo, Y.; Wen, Q.; Wu, Z.; Jin, J.; Lu, P.; Wang, Y. Copper-mediated cyanation of aryl boronic acids using benzyl cyanide. Tetrahedron 2013, 69, 8400–8404. [Google Scholar] [CrossRef]
- Khemnar, A.B.; Sawant, D.N.; Bhanage, B.M. Rhodium catalyzed cyanide-free cyanation of aryl halide by using formamide as a cyanide source. Tetrahedron Lett. 2013, 54, 2682–2684. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, B.; Chen, S.; Chen, F. Copper-catalyzed cyanation of aryl iodide with the combined cyanide source of urea and DMSO. Tetrahedron Lett. 2013, 54, 5250–5252. [Google Scholar] [CrossRef]
- Ganapathy, D.; Srinivas Kotha, S.; Sekar, G. Stable palladium nanoparticles catalyzed synthesis of benzonitriles using K4[Fe(CN)6]. Tetrahedron Lett. 2015, 56, 175–178. [Google Scholar] [CrossRef]
- Saha, D.; Adak, L.; Mukherjee, M.; Ranu, B.C. Hydroxyapatite-supported Cu(I)-catalysed cyanation of styrenyl bromides with K4[Fe(CN)6]: An easy access to cinnamonitriles. Org. Biomol. Chem. 2012, 10, 952–957. [Google Scholar] [CrossRef]
- Chatterjee, T.; Dey, R.; Ranu, B.C. ZnO-supported Pd nanoparticle-catalyzed ligand- and additive-free cyanation of unactivated aryl halides using K4[Fe(CN)6]. J. Org. Chem. 2014, 79, 5875–5879. [Google Scholar] [CrossRef]
- Senecal, T.D.; Shu, W.; Buchwald, S.L. A general, practical palladium-catalyzed cyanation of (hetero)aryl chlorides and bromides. Angew. Chem. Int. Ed. 2013, 52, 10035–10039. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.T.; Buchwald, S.L. Mild palladium-catalyzed cyanation of (hetero)aryl halides and triflates in aqueous media. Org. Lett. 2015, 17, 202–205. [Google Scholar] [CrossRef] [PubMed]
Entry | Pd/Coral Reef (g) | Solvent | Base | Time (h) | Yield (%) b |
---|---|---|---|---|---|
1 | 0 | DMF | K2CO3 | 7 | 0 |
2 | 0.05 | DMF | K2CO3 | 2 | 88 |
3 | 0.05 | DMF | NaF | 7 | 29 |
4 | 0.05 | DMF | KOAc | 3 | 79 |
5 | 0.05 | DMF | Et3N | 7 | 26 |
6 | 0.05 | DMF | Na2CO3 | 3 | 75 |
7 | 0.05 | DMSO | K2CO3 | 2 | 85 |
8 | 0.05 | NMP | K2CO3 | 7 | 28 |
9 | 0.05 | Toluene | K2CO3 | 10 | 18 |
10 | 0.05 | H2O | K2CO3 | 10 | 15 |
11 | 0.03 | DMF | K2CO3 | 2 | 64 |
12 | 0.08 | DMF | K2CO3 | 2 | 88 |
Entry | Aryl Halide | Product | Time (h) | Yield (%) b | TOF (h−1) |
---|---|---|---|---|---|
1 | 2 | 88 | 44,000 | ||
2 | 2 | 88 | 44,000 | ||
3 | 2 | 89 | 44,500 | ||
4 | 2 | 90 | 45,000 | ||
5 | 2 | 92 | 46,000 | ||
6 | 2 | 91 | 45,500 | ||
7 | 2 | 92 | 46,000 | ||
8 | 2 | 93c | 46,500 | ||
9 | 2 | 91 | 45,500 | ||
10 | 2 | 92 | 46,000 | ||
11 | 2 | 91 | 45,500 | ||
12 | 2 | 92 | 46,000 | ||
13 | 3 | 86 | 28,666 | ||
14 | 3 | 89 | 29,666 | ||
15 | 3 | 90c | 30,000 | ||
16 | 3 | 91c | 30,333 | ||
17 | 6 | 80 | 13,333 | ||
18 | 6 | 83 | 13,833 | ||
19 | 6 | 82 | 13,666 |
Entry | Reaction Conditions | Time | Yield (%) a | Ref. |
---|---|---|---|---|
1 | p-CH3OC6H4I, Pd/CuO NPs, K4Fe(CN)6, K2CO3, DMF, 120 °C | 15 h | 88 | [62] |
2 | p-CH3OC6H4Br, CuCN, L-proline, DMF, 120 °C | 45 h | 81 | [63] |
3 | p-CH3OC6H4I, Pd(OAc)2, 1,1-bis(diphenylphosphino)ferrocene, HCONH2, POCl3, MW, N2, 160 °C | 50 min | 78 | [64] |
4 | p-CH3OC6H4CH2OH, Cu(ClO4)2.6H2O, TMSN3, DDQ, DCE, 60 °C | 4 h | 82 | [65] |
5 | p-CH3OC6H4CHO, Cu(NO3)2, NH3, O2, DMSO, 80 °C | 5 h | 86 | [66] |
6 | p-CH3OC6H4I, CuI, HCONH2, PPh3, POCl3, N2, 140 °C | 24 h | 83 | [67] |
7 | p-CH3OC6H4I, Cu(NO3)2.3H2O, HCON(Me)2, HOAc, TBHP, DMF, air, 140 °C | 48 h | 87 | [68] |
8 | p-CH3OC6H4B(OH)2, CuI, PhCH2CN, TBHP, air, DMAc, 130 °C | 20 h | 72 | [69] |
9 | p-CH3OC6H4I, [Rh(cod)Cl]2, Xantphos, HCONH2, POCl3, N2, 135-140 °C | 24 h | 85 | [70] |
10 | p-CH3OC6H4I, CuF2, Li2CO3, CO(NH2)2, 1,10-phenanthroline, O2, DMSO, 150 °C | 36 h | 87 | [71] |
11 | p-CH3OC6H4I, Pd-BNPs, K4Fe(CN)6, K3PO4, DMF, 120 °C | 2 h | 88 | [72] |
12 | p-CH3OC6H4I, Cu(I)-HAP, K4Fe(CN)6, KF, DMF, 120 °C | 15 h | 80 | [73] |
13 | p-CH3OC6H4Br, ZnO-Pd NPs, K4Fe(CN)6, KF, DMF, 130 °C | 14 h | 76 | [74] |
14 | p-CH3OC6H4Cl, palladacycle precatalyst, XPhos, K4Fe(CN)6, KOAc, dioxane/H2O (1:1), 110 °C | 1 h | 95 | [75] |
15 | p-CH3OC6H4Br, palladacycle precatalyst, t-BuXPhos, Zn(CN)2, THF/H2O (1:5), r.t. | 18 h | 97 | [76] |
16 | p-CH3OC6H4I, Pd/coral reef, K4Fe(CN)6, K2CO3, DMF, 120 °C | 2 h | 89 | This work |
17 | p-CH3OC6H4Br, Pd/coral reef, K4Fe(CN)6, K2CO3, DMF, 120 °C | 3 h | 89 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasrollahzadeh, M.; Ghorbannezhad, F.; Sajadi, S.M.; Varma, R.S. Pd Nanocatalyst Adorning Coral Reef Nanocomposite for the Synthesis of Nitriles: Utility of Cucurbita pepo Leaf Extract as a Stabilizing and Reducing Agent. Nanomaterials 2019, 9, 565. https://doi.org/10.3390/nano9040565
Nasrollahzadeh M, Ghorbannezhad F, Sajadi SM, Varma RS. Pd Nanocatalyst Adorning Coral Reef Nanocomposite for the Synthesis of Nitriles: Utility of Cucurbita pepo Leaf Extract as a Stabilizing and Reducing Agent. Nanomaterials. 2019; 9(4):565. https://doi.org/10.3390/nano9040565
Chicago/Turabian StyleNasrollahzadeh, Mahmoud, Fatemeh Ghorbannezhad, S. Mohammad Sajadi, and Rajender S. Varma. 2019. "Pd Nanocatalyst Adorning Coral Reef Nanocomposite for the Synthesis of Nitriles: Utility of Cucurbita pepo Leaf Extract as a Stabilizing and Reducing Agent" Nanomaterials 9, no. 4: 565. https://doi.org/10.3390/nano9040565
APA StyleNasrollahzadeh, M., Ghorbannezhad, F., Sajadi, S. M., & Varma, R. S. (2019). Pd Nanocatalyst Adorning Coral Reef Nanocomposite for the Synthesis of Nitriles: Utility of Cucurbita pepo Leaf Extract as a Stabilizing and Reducing Agent. Nanomaterials, 9(4), 565. https://doi.org/10.3390/nano9040565