Eu3+, Tb3+- and Er3+, Yb3+-Doped α-MoO3 Nanosheets for Optical Luminescent Thermometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MoS2:Ln3+
2.3. Synthesis of α-MoO3
2.4. Characterization
3. Results and Discussion
3.1. Structure and Morphology Analysis
3.2. Luminescence Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Divigalpitiya, W.M.R.; Frindt, R.F.; Morrison, S.R. Oriented Films of Molybdenum Trioxide. Thin Solid Films 1990, 188, 173–179. [Google Scholar] [CrossRef]
- Carcia, P.F.; McCarron, E.M. Synthesis and Properties of Thin Film Polymorphs of Molybdenum Trioxide. Thin Solid Films 1987, 155, 53–63. [Google Scholar]
- Mai, L.; Hu, B.; Chen, W.; Qi, Y.; Lao, C.; Yang, R.; Dai, Y.; Wang, Z.L. Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries. Adv. Mater. 2007, 19, 3712–3716. [Google Scholar] [CrossRef]
- Kalantar-zadeh, K.; Tang, J.; Wang, M.; Wang, K.L.; Shailos, A.; Galatsis, K.; Kojima, R.; Strong, V.; Lech, A.; Wlodarski, W.; et al. Synthesis of Nanometre-Thick MoO3 Sheets. Nanoscale 2010, 2, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Afsharpour, M.; Mahjoub, A.; Amini, M.A. Synthesis of Molybdenum Oxide Nanohybrids as Efficient Catalysts in Oxidation of Alcohols. J. Inorg. Organomet. Polym. 2009, 19, 298–305. [Google Scholar] [CrossRef]
- Chen, D.; Liu, M.; Yin, L.; Li, T.; Yang, Z.; Li, X.; Fan, B.; Wang, H.; Zhang, R.; Li, Z.; et al. Single-Crystalline MoO3 Nanoplates: Topochemical Synthesis and Enhanced Ethanol-Sensing Performance. J. Mater. Chem. 2011, 21, 9332–9342. [Google Scholar] [CrossRef]
- Klinbumrung, A.; Thongtem, T.; Thongtem, S. Characterization of Orthorhombic α-MoO3 Microplates Produced by a Microwave Plasma Process. J. Nanomater. 2012, 2012, 10. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Wang, R.; Mi, R.; Li, S.; Cui, Y.; Deng, Y.; Mei, J.; Liu, H. Coating of α-MoO3 on Nitrogen-Doped Carbon Nanotubes by Electrodeposition as a High-Performance Cathode Material for Lithium-Ion Batteries. J. Power Sources 2015, 274, 1063–1069. [Google Scholar] [CrossRef]
- Kim, H.-S.; Cook, J.B.; Lin, H.; Ko, J.S.; Tolbert, S.H.; Ozolins, V.; Dunn, B. Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO3−x. Nat. Mater. 2017, 16, 454–460. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Chen, S.; Lu, Q.; Song, L.; Wei, Y.; Wang, X. Atomic-Level Molybdenum Oxide Nanorings with Full-Spectrum Absorption and Photoresponsive Properties. Nat. Commun. 2017, 8, 1559. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Lima, P.P.; Silva, N.J.O.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. Lanthanide-Based Luminescent Molecular Thermometers. New J. Chem. 2011, 35, 1177–1183. [Google Scholar] [CrossRef]
- Zheng, T.; Luo, L.; Du, P.; deng, A.; Li, W. Ferroelectric, upconversion emission and optical thermometric properties of color-controllable Er3+-doped Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Yb1/2Nb1/2)O3 ferroelectrics. J. Eur. Ceram. Soc. 2018, 38, 575–583. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Bu, Y.; Yan, X.; Wang, J.; Cai, P.; Vu, T.; Seo, H.J. Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4. Sci. Rep. 2017, 7, 43383. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, A.M.; Liu, J.; Laforce, B.; Vincze, L.; Van Hecke, K.; Van Deun, R. Cryogenic Luminescent Thermometers Based on Multinuclear Eu3+/Tb3+ Mixed Lanthanide Polyoxometalates. Dalton Trans. 2017, 46, 5781–5785. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zou, W.; Song, R.; Yu, J.; Zhang, W.; Yang, Y.; Qian, G. A Ratiometric and Colorimetric Luminescent Thermometer over a Wide Temperature Range Based on a Lanthanide Coordination Polymer. Chem. Commun. 2014, 50, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ananias, D.; Carné-Sánchez, A.; Brites, C.D.S.; Imaz, I.; Maspoch, D.; Rocha, J.; Carlos, L.D. Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying. Adv. Funct. Mater. 2015, 25, 2824–2830. [Google Scholar] [CrossRef] [Green Version]
- Brites, C.D.S.; Lima, P.P.; Silva, N.J.O.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale. Adv. Mater. 2010, 22, 4499–4504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Yin, W.; Zheng, X.; Tian, G.; Zhang, X.; Bao, T.; Dong, X.; Wang, Z.; Gu, Z.; Ma, X.; et al. Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics 2015, 5, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, A.M.; Van Deun, R.; Kaczmarek, M.K. TeSen—Tool for Determining Thermometric Parameters in Ratiometric Optical Thermometry. Sens. Actuator B Chem. 2018, 273, 696–702. [Google Scholar] [CrossRef]
- Zhang, X.; Han, W.P.; Wu, J.B.; Milana, S.; Lu, Y.; Li, Q.Q.; Ferrari, A.C.; Tan, P.H. Raman Spectroscopy of Shear and Layer Breathing Modes in Multilayer MoS2. Phys. Rev. B 2013, 87, 115413. [Google Scholar] [CrossRef]
- Dong, H.F.; Tang, S.; Hao, Y.; Yu, H.; Dai, W.; Zhao, G.; Cao, Y.; Lu, H.; Zhang, X.; Ju, H. Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2016, 8, 3107–3116. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, N.; Mishra, M.; Gupta, G.; Fanetti, M.; Valant, M.; Kumar, M. Growth of MoS2–MoO3 Hybrid Microflowers via Controlled Vapor Transport Process for Efficient Gas Sensing at Room Temperature. Adv. Mater. Interfaces 2018, 39, 1800071. [Google Scholar] [CrossRef]
- Liu, J.; Van Deun, R.; Kaczmarek, A.M. Optical Thermometry of MoS2:Eu3+ 2D Luminescent Nanosheets. J. Mater. Chem. C 2016, 4, 9937–9941. [Google Scholar] [CrossRef]
- Struck, C.W.; Fonger, W.H. Thermal Quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn Emitting States in La2O2S. J. Appl. Phys. 1971, 42, 4515–4516. [Google Scholar] [CrossRef]
- Zheng, T.; Luo, L. Linear response fluorescent temperature-sensing properties based on Stark sublevels of Er3+-doped Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Yb1/2Nb1/2)O3 ceramics. Ceram. Int. 2018, 44, 12670–12675. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, F.; Lin, H.; Zhou, J.; Xu, J.; Wang, Y. A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States. Adv. Funct. Mater. 2016, 26, 3139–3145. [Google Scholar] [CrossRef]
- Rocha, J.; Brites, C.D.S.; Carlos, L.D. Lanthanide Organic Framework Luminescent Thermometers. Chem. Eur. J. 2016, 22, 14782–14795. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Millán, A.; Carlos, L.D. Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C., Pecharsky Vitalij, K., Eds.; Elsevier: North-Holland, The Netherlands, 2016; Volume 49, pp. 339–427. [Google Scholar]
- Balabhadra, S.; Debasu, M.L.; Brites, C.D.S.; Nunes, L.A.O.; Malta, O.L.; Rocha, J.; Bettinelli, M.; Carlos, L.D. Boosting the Sensitivity of Nd3+-Based Luminescent Nanothermometers. Nanoscale 2015, 7, 17261–17267. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Yan, X. Optical Temperature Sensing of Hexagonal Na0.82Ca0.08Er0.16Y0.853F4 Phosphor. RSC Adv. 2014, 4, 24170–24175. [Google Scholar] [CrossRef]
- Du, P.; Luo, L.; Yue, Q.; Li, W. The Simultaneous Realization of High- and Low-Temperature Thermometry in Er3+/Yb3+-Codoped Y2O3 Nanoparticles. Mater. Lett. 2015, 143, 209–211. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, Z.; Lv, C.; Qin, W. Temperature Sensor Based on the UV Upconversion Luminescence of Gd3+ in Yb3+–Tm3+–Gd3+ Codoped NaLuF4 Microcrystals. J. Mater. Chem. C 2013, 1, 5502–5507. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Van Deun, R.; Kaczmarek, A.M. Eu3+, Tb3+- and Er3+, Yb3+-Doped α-MoO3 Nanosheets for Optical Luminescent Thermometry. Nanomaterials 2019, 9, 646. https://doi.org/10.3390/nano9040646
Liu J, Van Deun R, Kaczmarek AM. Eu3+, Tb3+- and Er3+, Yb3+-Doped α-MoO3 Nanosheets for Optical Luminescent Thermometry. Nanomaterials. 2019; 9(4):646. https://doi.org/10.3390/nano9040646
Chicago/Turabian StyleLiu, Jing, Rik Van Deun, and Anna M. Kaczmarek. 2019. "Eu3+, Tb3+- and Er3+, Yb3+-Doped α-MoO3 Nanosheets for Optical Luminescent Thermometry" Nanomaterials 9, no. 4: 646. https://doi.org/10.3390/nano9040646
APA StyleLiu, J., Van Deun, R., & Kaczmarek, A. M. (2019). Eu3+, Tb3+- and Er3+, Yb3+-Doped α-MoO3 Nanosheets for Optical Luminescent Thermometry. Nanomaterials, 9(4), 646. https://doi.org/10.3390/nano9040646