Efficient Charge Carrier Separation in l-Alanine Acids Derived N-TiO2 Nanospheres: The Role of Oxygen Vacancies in Tetrahedral Ti4+ Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Samples
2.2. Characterizations
2.3. Photocatalytic Activity
2.4. Time-Resolved IR Measurement
3. Results
3.1. Characterizations
3.2. Photocatalytic Activity
3.3. Decay Kineticas of Photogenerated Electrons
3.4. The Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Devi, L.G.; Kavitha, R. Review on modified N–TiO2 for green energy applications under UV/visible light: Selected results and reaction mechanisms. RSC Adv. 2014, 4, 28265–28299. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Nakano, Y.; Morikawa, T.; Ohwaki, T.; Yaga, Y. Deep-level optical spectroscopy investigation of N-doped TiO2 films. Appl. Phys. Lett. 2005, 86, 132104. [Google Scholar] [CrossRef]
- Yu, J.; Yu, J.C.; Leung, M.K.-P.; Ho, W.; Cheng, B.; Zhao, X.; Zhao, J. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J. Catal. 2003, 217, 69–78. [Google Scholar] [CrossRef]
- Diwald, O.; Thompson, T.L.; Zubkov, T.; Goralski, E.G.; Walck, S.D.; Yates, J.T. Photochemical Activity of Nitrogen-Doped Rutile TiO2 (110) in Visible Light. J. Phys. Chem. B 2004, 108, 6004–6008. [Google Scholar] [CrossRef]
- Prokes, S.M.; Gole, J.L.; Chen, X.; Burda, C.; Carlos, W.E. Defect-Related Optical Behavior in Surface Modified TiO2 Nanostructures. Adv. Funct. Mater. 2005, 15, 161–167. [Google Scholar] [CrossRef]
- Cho, S.; Ahn, C.; Park, J.; Jeon, S. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption. Nanoscale 2018, 10, 9747–9751. [Google Scholar] [CrossRef] [PubMed]
- Jagadale, T.C.; Takale, S.P.; Sonawane, R.S.; Joshi, H.M.; Patil, S.I.; Kale, B.B.; Ogale, S.B. N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol–Gel Method. J. Phys. Chem. C 2008, 12, 14595–14602. [Google Scholar] [CrossRef]
- Chemseddine, A.; Moritz, T. Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 1999, 2, 235–245. [Google Scholar] [CrossRef]
- Kanie, K.; Sugimoto, T. Shape control of anatase TiO2 nanoparticles by amino acids in a gel–sol system. Chem. Commun. 2004, 1584–1586. [Google Scholar] [CrossRef]
- Durupthy, O.; Bill, J.; Aldinger, F. Bioinspired Synthesis of Crystalline TiO2: Effect of Amino Acids on Nanoparticles Structure and Shape. Cryst. Growth Des. 2007, 7, 2696–2704. [Google Scholar] [CrossRef]
- Wang, J.; Tafen, D.N.; Lewis, J.P.; Hong, Z.; Manivannan, A.; Zhi, M.; Li, M.; Wu, N. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. J. Am. Chem. Soc. 2009, 131, 12290–12297. [Google Scholar] [CrossRef]
- Batzill, M.; Morales, E.H.; Diebold, U. Influence of Nitrogen Doping on the Defect Formation and Surface Properties of TiO2 Rutile and Anatase. Phys. Rev. Lett. 2006, 96, 026103. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, Q.; Krol, R. van de Creating Oxygen Vacancies as a Novel Strategy To Form Tetrahedrally Coordinated Ti4+ in Fe/TiO2 Nanoparticles. J. Phys. Chem. C 2012, 116, 7219–7226. [Google Scholar] [CrossRef]
- Li, G.; Dimitrijevic, N.M.; Chen, L.; Nichols, J.M.; Rajh, T.; Gray, K.A. The Important Role of Tetrahedral Ti4+ Sites in the Phase Transformation and Photocatalytic Activity of TiO2 Nanocomposites. J. Am. Chem. Soc. 2008, 130, 5402–5403. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Zhang, M.; Yang, J.; Zhang, Z. Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl. Catal. B 2010, 100, 84–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, J.; Xie, X.; Zhuang, H.; Zhou, Y.; Lin, H.; Yuan, R.; Dai, W.; Ding, Z.; Wang, X.; et al. Controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO2 by H2 reduction. Appl. Catal. A 2012, 425–426, 117–124. [Google Scholar] [CrossRef]
- Yao, W.; Fang, H.; Ou, E.; Wang, J.; Yan, Z. Highly efficient catalytic oxidation of cyclohexane over cobalt-doped mesoporous titania with anatase crystalline structure. Catal. Comm. 2006, 7, 387–390. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L. Controllable One-Pot Synthesis and Enhanced Photocatalytic Activity of Mixed-Phase TiO2 Nanocrystals with Tunable Brookite/Rutile Ratios. J. Phys. Chem. C 2009, 113, 1785–1790. [Google Scholar] [CrossRef]
- Yu, X.; Yu, J.; Cheng, B.; Jaroniec, M. Synthesis of Hierarchical Flower-like AlOOH and TiO2/AlOOH Superstructures and their Enhanced Photocatalytic Properties. J. Phys. Chem. C 2009, 113, 17527–17535. [Google Scholar] [CrossRef]
- Zhuang, J.; Tian, Q.; Zhou, H.; Liu, Q.; Liu, P.; Zhong, H. Hierarchical porous TiO2@C hollow microspheres: One-pot synthesis and enhanced visible-light photocatalysis. J. Mater. Chem. 2012, 22, 7036–7042. [Google Scholar] [CrossRef]
- Pan, B.F.; He, R.; Gao, D.X.; Zhang, Y.F. Study on growth kinetics of CdSe nanocrystals in oleic acid/dodecylamine. J. Cryst. Growth 2006, 286, 318–323. [Google Scholar] [CrossRef]
- Sato, S.; Nakamura, R.; Abe, S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl. Catal. A 2005, 284, 131–137. [Google Scholar] [CrossRef]
- Garbassi, F.; Balducci, L. Preparation and characterization of spherical TiO2–SiO2 particles. Micropor. Mesopor. Mater. 2001, 47, 51–59. [Google Scholar] [CrossRef]
- Petrik, I.S.; Krylova, G.V.; Kelyp, O.O.; Lutsenko, L.V.; Smirnova, N.P.; Oleksenko, L.P. XPS and TPR study of sol-gel derived M/TiO2 powders (M=Co, Cu, Mn, Ni). Chem. Phys. Tech. Surf. 2015, 6, 179–189. [Google Scholar]
- Yamashita, H.; Ichihashi, Y.; Zhang, S.G.; Matsumura, Y.; Souma, Y.; Tatsumi, T.; Anpo, M. Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework. Appl. Surf. Sci. 1997, 121–122, 305–309. [Google Scholar] [CrossRef]
- Anpo, M.; Takeuchi, M.; Ikeue, K.; Dohshi, S. Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation. - The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts. Curr. Opin. Solid State Mater. Sci. 2002, 6, 381–388. [Google Scholar] [CrossRef]
- Anpo, M.; Thomas, J.M. Single-site photocatalytic solids for the decomposition of undesirable molecules. Chem Commun. 2006, 3273–3278. [Google Scholar] [CrossRef] [PubMed]
- Anpo, M.; Kim, T.-H.; Matsuoka, M. The design of Ti-, V-, Cr-oxide single-site catalysts within zeolite frameworks and their photocatalytic reactivity for the decomposition of undesirable molecules—The role of their excited states and reaction mechanisms. Catal. Today 2009, 142, 114–124. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Huo, Y. Highly Active TiO2N Photocatalysts Prepared by Treating TiO2 Precursors in NH3/Ethanol Fluid under Supercritical Conditions. J. Phys. Chem. B 2006, 110, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, J.; Thangamuthu, R.; Pandurangan, A. Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 5070–5080. [Google Scholar] [CrossRef]
- Thompson, T.L.; Yates, J.T. Surface Science Studies of the Photoactivation of TiO2 New Photochemical Processes. Chem. Rev. 2006, 106, 4428–4453. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.; Fu, X.; Zhang, N.; Xu, Y. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Zuo, Y.; Li, J.; Wang, J. Photodegradation of some dyes over Ce/FSM-16 catalyst under solar light. Catal. Lett. 2007, 119, 245–251. [Google Scholar] [CrossRef]
- Rothenberger, G.; Moser, J.; Graetzel, M.; Serpone, N.; Sharma, D.K. Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 1985, 107, 8054–8059. [Google Scholar] [CrossRef]
- Takeshita, K.; Sasaki, Y.; Kobashi, M.; Tanaka, Y.; Maeda, S.; Yamakata, A.; Ishibashi, T.; Onishi, H. Photophysics and electron dynamics in dye-sensitized semiconductor film studied by time-resolved mid-IR spectroscopy. J. Phys. Chem. B 2003, 107, 4156–4161. [Google Scholar] [CrossRef]
- Shen, S.; Wang, X.; Chen, T.; Feng, Z.; Li, C. Transfer of Photoinduced Electrons in Anatase–Rutile TiO2 Determined by Time-Resolved Mid-Infrared Spectroscopy. J. Phys. Chem. C 2014, 118, 12661–12668. [Google Scholar] [CrossRef]
- Panayotov, D.A.; Morris, J.R. Thermal Decomposition of a Chemical Warfare Agent Simulant (DMMP) on TiO2: Adsorbate Reactions with Lattice Oxygen as Studied by Infrared Spectroscopy. J. Phys. Chem. C 2009, 113, 15684–15691. [Google Scholar] [CrossRef]
- Chen, T.; Feng, Z.H.; Wu, G.P.; Shi, J.Y.; Ma, G.J.; Ying, P.L.; Li, C. Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO2 by in situ Fourier Transform IR and Time-Resolved IR Spectroscopy. J. Phys. Chem. C 2007, 111, 8005–8014. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Luo, X.; Luo, Y.; Xu, P.; He, J.; Jiang, L.; Li, J.; Yan, Z.; Wang, J. Efficient Charge Carrier Separation in l-Alanine Acids Derived N-TiO2 Nanospheres: The Role of Oxygen Vacancies in Tetrahedral Ti4+ Sites. Nanomaterials 2019, 9, 698. https://doi.org/10.3390/nano9050698
Chen Y, Luo X, Luo Y, Xu P, He J, Jiang L, Li J, Yan Z, Wang J. Efficient Charge Carrier Separation in l-Alanine Acids Derived N-TiO2 Nanospheres: The Role of Oxygen Vacancies in Tetrahedral Ti4+ Sites. Nanomaterials. 2019; 9(5):698. https://doi.org/10.3390/nano9050698
Chicago/Turabian StyleChen, Yongjuan, Xiu Luo, Yao Luo, Peiwen Xu, Jiao He, Liang Jiang, Junjie Li, Zhiying Yan, and Jiaqiang Wang. 2019. "Efficient Charge Carrier Separation in l-Alanine Acids Derived N-TiO2 Nanospheres: The Role of Oxygen Vacancies in Tetrahedral Ti4+ Sites" Nanomaterials 9, no. 5: 698. https://doi.org/10.3390/nano9050698
APA StyleChen, Y., Luo, X., Luo, Y., Xu, P., He, J., Jiang, L., Li, J., Yan, Z., & Wang, J. (2019). Efficient Charge Carrier Separation in l-Alanine Acids Derived N-TiO2 Nanospheres: The Role of Oxygen Vacancies in Tetrahedral Ti4+ Sites. Nanomaterials, 9(5), 698. https://doi.org/10.3390/nano9050698