Synthesis of Gold Nanoparticles (AuNPs) Using Ricinus communis Leaf Ethanol Extract, Their Characterization, and Biological Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Extract Preparation
2.2. Synthesis of AuNPs Using R. communis Leaf Extract
2.3. Characterization of AuNPs Fabricated with R. communis Leaf Extract
2.4. Gas Chromatography–Mass Spectrometry Analysis of RcExt
2.5. High-Performance Liquid Chromatography/Ultraviolet-Visible (HPLC/UV-VIS) Analysis of RcExt
2.6. Antimicrobial Activities of RcExt and RcExt-AuNPs
2.6.1. Micro-Organisms and Media
2.6.2. Well Diffusion Method for Antimicrobial Activity
2.7. Splenic Cell Culture Preparation
2.8. Lytic Effects of RcExt and RcExt-AuNPs on Red Blood Cells (RBCs)
2.9. Effects of RcExt and RcExt-AuNPs on the Hela and HepG2 Cancer Cell Lines
2.10. Statistical Analysis
3. Results
3.1. Characterization of RcExt-AuNPs
3.1.1. Change in Color
3.1.2. UV-Vis Spectrometry
3.1.3. Morphological Characterization Using Scanning Electron Microscopy (SEM)
3.1.4. FT-IR of AuNPs Phytofabricated by RcExt
3.1.5. XRD Analysis of RcExt-AuNPs
3.1.6. GC-MS/MS Analysis of RcExt
3.1.7. HPLC/UV-VIS Analysis of RcExt
3.2. Antimicrobial Activity
3.3. Cytotoxic/Proliferative Effects on Rat Splenic Cell Proliferation
3.4. Lytic Effects of RcExt and RcExt-AuNPs on RBCs
3.5. Effects of RcExt and RcExt-AuNPs on the Hela and HepG2 Cancer Cell Lines
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeyaseelan, E.C.; Jashothan, P.J. In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. As. Pac. J. Trop. Biomed. 2012, 2, 717–721. [Google Scholar] [CrossRef]
- Rao, M.U.; Sreenivasulu, M.; Chengaiah, B.; Reddy, K.J.; Chetty, C.M. Herbal medicines for diabetes mellitus: A review. Int. J. Pharm. Tech. Res. 2010, 2, 1883–1892. [Google Scholar]
- Jayaweera, D. Medicinal Plants (Indigenous and Exotic) Used in Ceylon; National Science Foundation of Sri Lanka: Colombo, Sri Lanka, 1980. [Google Scholar]
- Kota, C.S.; Manthri, S. Antibacterial activity of Ricinus communis leaf extract. Int. J. Pharm. Sci. Res. 2011, 2, 1259–1261. [Google Scholar]
- Rekha, D. Study of medicinal plants used from koothanoallur and marakkadai, Thiruvarur district of Tamil nadu, India. Hygeia 2013, 5, 164–170. [Google Scholar]
- Kadri, A.; Gharsallah, N.; Damak, M.; Gdoura, R. Chemical composition and in vitro antioxidant properties of essential oil of Ricinus communis L. J. Med. Plants Res. 2011, 5, 1466–1470. [Google Scholar]
- Shokeen, P.; Anand, P.; Murali, Y.K.; Tandon, V. Antidiabetic activity of 50% ethanolic extract of Ricinus communis and its purified fractions. Food Chem. Toxicol. 2008, 46, 3458–3466. [Google Scholar] [CrossRef] [PubMed]
- Zarai, Z.; Chobba, I.B.; Mansour, R.B.; Békir, A.; Gharsallah, N.; Kadri, A. Essential oil of the leaves of Ricinus communis L.: In vitro cytotoxicity and antimicrobial properties. Lipids Health Dis. 2012, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Valderramas, A.C.; Moura, S.H.P.; Couto, M.; Pasetto, S.; Chierice, G.O.; Guimarães, S.A.C.; Zurron, A. Antiinflammatory activity of Ricinus communis derived polymer. Braz. J. Oral Sci. 2008, 7, 1666–1672. [Google Scholar]
- Verma, S.K.; Yousuf, S.; Singh, S.K.; Prasad, G.; Dua, V.; Mathur, A. Antimicrobial potential of roots of Riccinus communis against pathogenic microorganisms. Int. J. Pharm. Biol. Sci. 2011, 1, 545–548. [Google Scholar]
- Taur, D.J.; Waghmare, M.G.; Bandal, R.S.; Patil, R.Y. Antinociceptive activity of Ricinus communis L. leaves. As. Pac. J. Trop. Biomed. 2011, 1, 139. [Google Scholar] [CrossRef]
- Pigott, E.J.; Roberts, W.; Ovenden, S.P.; Rochfort, S.; Bourne, D.J. Metabolomic investigations of Ricinus communis for cultivar and provenance determination. Metabolomics 2012, 8, 634–642. [Google Scholar] [CrossRef]
- Kang, S.S.; Cordell, G.A.; Soejarto, D.D.; Fong, H.H. Alkaloids and flavonoids from Ricinus communis. J. Nat. Prod. 1985, 48, 155–156. [Google Scholar] [CrossRef]
- Singh, P.P.; Chauhan, S. Activity guided isolation of antioxidants from the leaves of Ricinus communis L. Food Chem. 2009, 114, 1069–1072. [Google Scholar] [CrossRef]
- Srivastava, P.; Jyotshna Gupta, N.; Maurya, A.K.; Shanker, K. New anti-inflammatory triterpene from the root of Ricinus communis. Nat. Prod. Res. 2014, 28, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, B.; David, L.; Achim, M.; Clichici, S.; Filip, G.A. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J. Mol. Liquids 2016, 221, 271–278. [Google Scholar] [CrossRef]
- Sriranjani, R.; Srinithya, B.; Vellingiri, V.; Brindha, P.; Anthony, S.P.; Sivasubramanian, A.; Muthuraman, M.S. Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J. Mol. Liquids 2016, 220, 926–930. [Google Scholar] [CrossRef]
- Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Czupryn, M.; Antos-Bielska, M.; Szemraj, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid-modified silver nanoparticles for wound healing: The importance of size. Int. J. Nanomed. 2018, 13, 991. [Google Scholar] [CrossRef]
- Ranoszek-Soliwoda, K.; Tomaszewska, E.; Małek, K.; Celichowski, G.; Orlowski, P.; Krzyzowska, M.; Grobelny, J. The synthesis of monodisperse silver nanoparticles with plant extracts. Coll. Surf. B Biointerf. 2019, 177, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.J.; Murtaza, G.; Mehmood, A.; Bhatti, T.M. Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Mater. Lett. 2015, 153, 10–13. [Google Scholar] [CrossRef]
- Ahmad, N.; Bhatnagar, S.; Ali, S.S.; Dutta, R. Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int. J. Nanomed. 2015, 10, 7019. [Google Scholar]
- Shobha, N.; Nanda, N.; Giresha, A.S.; Manjappa, P.; Dharmappa, K.; Nagabhushana, B. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater. Sci. Eng. C. 2018, 97, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Ghramh, H.A.; Jazem, M.A.; Sadeq, A.K. Synthesis of Silver Nanoparticles from Schinus molle extract and its larvicidal activity against Aedes aegypti (L.), the vector of dengue fever in kingdom of Saudi Arabia. Res. J. Biotechnol. 2018, 13, 63–70. [Google Scholar]
- Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. [Google Scholar] [CrossRef]
- Harley, J.P.; Prescott, L.M. Laboratory Exercises in Microbiology; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Ibrahim, E.H.; Kilany, M.; Ghramh, H.A.; Khan, K.A.; ul Islam, S. Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthesized silver nanoparticles (AgNPs) using Juniperus procera. Saudi J. Biol. Sci. 2018. [Google Scholar] [CrossRef]
- Yashi, S.; Yoshiie, K.; Oda, H.; Sugano, M.; Imaizumi, K. Dietary Curcuma xanthorrhiza Roxb. increases mitogenic responses of splenic lymphocytes in rats, and alters populations of the lymphocytes in mice. J. Nutr. Sci. Vitaminol. 1993, 39, 345–354. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Oves, M.; Khan, M.S.; Zaidi, A.; Ahmed, A.S.; Ahmed, F.; Ahmad, E.; Sherwani, A.; Owais, M.; Azam, A. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS ONE 2013, 8, e59140. [Google Scholar] [CrossRef]
- Ranganathan, R.; Madanmohan, S.; Kesavan, A.; Baskar, G.; Krishnamoorthy, Y.R.; Santosham, R.; Ponraju, D.; Rayala, S.K.; Venkatraman, G. Nanomedicine: Towards development of patient-friendly drug-delivery systems for oncological applications. Int. J. Nanomed. 2012, 7, 1043. [Google Scholar]
- Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.-K. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res. Int. 2013. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Atorngitjawat, P.; Meziani, M.J. Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir 2001, 17, 5707–5710. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 2007, 18, 105104. [Google Scholar] [CrossRef]
- Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod. 2013, 46, 132–137. [Google Scholar] [CrossRef]
- Sawle, B.D.; Salimath, B.; Deshpande, R.; Bedre, M.D.; Prabhakar, B.K.; Venkataraman, A. Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci. Technol. Adv. Mater. 2008, 9, 035012. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.B.; Madhusudhan, A.; Ramakrishna, D.; Ayodhya, D.; Venkatesham, M.; Veerabhadram, G. Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: Characterization, catalytic and antibacterial activity. J. Nanostruct. Chem. 2015, 5, 185–193. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Pallela, P.N.V.K.; Ummey, S.; Ruddaraju, L.K.; Pammi, S.; Yoon, S.-G. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microb. Pathog. 2018, 124, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, C.; Sivasubramanian, G.; Parthasarathi, B.; Baskaran, K.; Balachander, R.; Parameswaran, V. Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: A promenade towards sustainability. Appl. Nanosci. 2016, 6, 711–723. [Google Scholar] [CrossRef]
- Savić, N.D.; Milivojević, D.R.; Glišić, B.Đ.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M.I. A comparative antimicrobial and toxicological study of gold (III) and silver (I) complexes with aromatic nitrogen-containing heterocycles: Synergistic activity and improved selectivity index of Au (III)/Ag (I) complexes mixture. RSC Adv. 2016, 6, 13193–13206. [Google Scholar] [CrossRef]
- King, A.J.; Brown, G.D.; Gilday, A.D.; Larson, T.R.; Graham, I.A. Production of bioactive diterpenoids in the Euphorbiaceae depends on evolutionarily conserved gene clusters. Plant Cell 2014, 26, 3286–3298. [Google Scholar] [CrossRef]
- Tan, Q.G.; Cai, X.H.; Du, Z.Z.; Luo, X.D. Three terpenoids and a tocopherol-related compound from Ricinus communis. Helvet. Chim. Acta 2009, 92, 2762–2768. [Google Scholar] [CrossRef]
- Costa-Lotufo, L.V.; Khan, M.T.H.; Ather, A.; Wilke, D.V.; Jimenez, P.C.; Pessoa, C.; de Moraes, M.E.A.; de Moraes, M.O. Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J. Ethnopharmacol. 2005, 99, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Mocan, T. Hemolysis as expression of nanoparticles-induced cytotoxicity in red blood cells. BMBN 2013, 1, 7–12. [Google Scholar]
- Nemudzivhadi, V.; Masoko, P. In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evid. Based Compl. Alternat. Med. 2014. [Google Scholar] [CrossRef] [PubMed]
Retention Time (min) | Compounds | Molecular Formula | Molecular Weight |
---|---|---|---|
7.13 | a, a-Gluco-octonic acid lactone | C8H14O8 | 238 |
7.23 | Ethyl a-d-glucopyranoside | C8H16O6 | 208 |
10.14 | Hexadecanoic acid | C17H34O2 | 270 |
11.19 | 3-Pyridinecarbonitrile | C8H8N2O2 | 164 |
12.75 | Phytol | C20H40O | 296 |
12.97 | Methyl stearate | C19H38O2 | 298 |
16.01 | 2,4-Cresotic acid | C29H30O10 | 538 |
18.12 | 2-hydroxy-1-(hydroxymethyl) ethyl ester | C19H38O4 | 330 |
20.13 | Octadecanoic acid | C21H42O4 | 358 |
23.98 | Vitamin E | C29H50O2 | 430 |
27.41 | a-Amyrin | C30H50O | 426 |
28.24 | Lupeol | C30H50O | 426 |
Peak # | Retention Time | Area | Area% | Height | Height% |
---|---|---|---|---|---|
1 | 0.458 | 15,104 | 0.046 | 2237 | 0.141 |
2 | 0.625 | 3741 | 0.011 | 536 | 0.034 |
3 | 0.833 | 64,428 | 0.196 | 14,053 | 0.888 |
4 | 1.208 | 11,160,808 | 33.974 | 648,863 | 40.982 |
5 | 1.483 | 5,687,035 | 17.311 | 306,533 | 19.361 |
6 | 2.058 | 14,276,700 | 43.459 | 574,230 | 36.268 |
7 | 3.167 | 311,400 | 0.948 | 12,518 | 0.791 |
8 | 3.633 | 383,032 | 1.166 | 6927 | 0.438 |
9 | 5.042 | 142,801 | 0.435 | 4220 | 0.267 |
10 | 5.892 | 179,320 | 0.546 | 3861 | 0.244 |
11 | 6.975 | 36,198 | 0.110 | 1422 | 0.090 |
12 | 7.458 | 90,968 | 0.277 | 1204 | 0.076 |
13 | 10.500 | 4713 | 0.014 | 121 | 0.008 |
14 | 11.975 | 8137 | 0.025 | 223 | 0.014 |
15 | 16.300 | 37,681 | 0.115 | 794 | 0.050 |
16 | 17.158 | 106,382 | 0.324 | 958 | 0.061 |
17 | 30.433 | 277,649 | 0.845 | 3739 | 0.236 |
18 | 51.867 | 65,207 | 0.198 | 841 | 0.053 |
Totals | 32,851,304 | 100.000 | 1,583,280 | 100.000 |
Peak # | Retention Time | Area | Area% | Height | Height% |
---|---|---|---|---|---|
1 | 0.583 | 1418 | 0.015 | 129 | 0.026 |
2 | 1.150 | 1,027,787 | 11.065 | 84,294 | 17.277 |
3 | 1.525 | 3,803,372 | 40.945 | 162,206 | 33.245 |
4 | 2.042 | 2,442,100 | 26.291 | 143,116 | 29.333 |
5 | 2.267 | 1,548,996 | 16.676 | 90,022 | 18.451 |
6 | 4.550 | 50,734 | 0.546 | 1955 | 0.401 |
7 | 5.208 | 28,354 | 0.305 | 997 | 0.204 |
8 | 8.725 | 14,372 | 0.155 | 309 | 0.063 |
9 | 10.333 | 66,916 | 0.720 | 1307 | 0.268 |
10 | 15.958 | 36,085 | 0.388 | 1000 | 0.205 |
11 | 18.450 | 2599 | 0.028 | 106 | 0.022 |
12 | 28.150 | 74,939 | 0.807 | 1002 | 0.205 |
13 | 49.525 | 191,205 | 2.058 | 1463 | 0.300 |
Totals | 9,288,877 | 100.000 | 487,906 | 100.000 |
Peak # | Retention Time | Area | Area% | Height | Height% |
---|---|---|---|---|---|
1 | 0.667 | 369 | 0.005 | 74 | 0.022 |
2 | 1.125 | 4,410,901 | 54.582 | 173,353 | 51.625 |
3 | 2.067 | 3,612,019 | 44.697 | 160,406 | 47.769 |
4 | 4.624 | 14,444 | 0.179 | 905 | 0.272 |
5 | 5.075 | 43,451 | 0.538 | 1057 | 0.315 |
Totals | 8,081,184 | 100.000 | 335,795 | 100.000 |
No. | Treatment | Absorbance at the Wave Length of 576 nm | Hemolysis (%) |
---|---|---|---|
1 | RcExt | 0.136 ± 0.002 b | 4.15 ± 0.035 a |
2 | RcExt-AuNPs | 3.00 ± 0.000 a | 100 ± 0.000 b |
3 | Control (Negative) | 0.0123 ± 0.00 c | 0 ± 0.000 c |
4 | Control (Positive) | 3.00 ± 0.000 a | 100 ± 0.000 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghramh, H.A.; Khan, K.A.; Ibrahim, E.H.; Setzer, W.N. Synthesis of Gold Nanoparticles (AuNPs) Using Ricinus communis Leaf Ethanol Extract, Their Characterization, and Biological Applications. Nanomaterials 2019, 9, 765. https://doi.org/10.3390/nano9050765
Ghramh HA, Khan KA, Ibrahim EH, Setzer WN. Synthesis of Gold Nanoparticles (AuNPs) Using Ricinus communis Leaf Ethanol Extract, Their Characterization, and Biological Applications. Nanomaterials. 2019; 9(5):765. https://doi.org/10.3390/nano9050765
Chicago/Turabian StyleGhramh, Hamed A., Khalid Ali Khan, Essam H. Ibrahim, and William N. Setzer. 2019. "Synthesis of Gold Nanoparticles (AuNPs) Using Ricinus communis Leaf Ethanol Extract, Their Characterization, and Biological Applications" Nanomaterials 9, no. 5: 765. https://doi.org/10.3390/nano9050765
APA StyleGhramh, H. A., Khan, K. A., Ibrahim, E. H., & Setzer, W. N. (2019). Synthesis of Gold Nanoparticles (AuNPs) Using Ricinus communis Leaf Ethanol Extract, Their Characterization, and Biological Applications. Nanomaterials, 9(5), 765. https://doi.org/10.3390/nano9050765