Interlayer Difference of Bilayer-Stacked MoS2 Structure: Probing by Photoluminescence and Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization and Measurement
3. Results
3.1. PL and Raman Difference between Layers of BSS
3.2. Spatial Inhomogeneity in BSS
3.3. PL and Raman of Freestanding MoS2
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Lopezsanchez, O.; Lembke, D.; Kayci, M. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497. [Google Scholar] [CrossRef]
- Zande, A.M.V.D.; Kunstmann, J.; Chernikov, A. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Lee, G.H.; Zande, A.M.V.D. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Z.; Xu, K. Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance. Nano Lett. 2015, 15, 7558–7566. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Li, Y.; Huang, D. Stacking-symmetry governed second harmonic generation in graphene trilayers. Sci. Adv. 2018, 4, eaat0074. [Google Scholar] [CrossRef]
- Hsu, W.T.; Zhao, Z.A.; Li, L.J. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. Acs Nano 2014, 8, 2951–2958. [Google Scholar] [CrossRef]
- Havener, R.W.; Zhuang, H.; Brown, L. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 2012, 12, 3162–3167. [Google Scholar] [CrossRef]
- Kim, K.; Coh, S.; Tan, L.Z. Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure. Phys. Rev. Lett. 2012, 108, 246103. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A.; Ghosh, S.; Bao, W. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902. [Google Scholar] [CrossRef]
- Nika, D.L.; Pokatilov, E.P.; Askerov, A.S. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569. [Google Scholar] [CrossRef]
- Cai, W.; Moore, A.; Chen, S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651. [Google Scholar] [CrossRef]
- Li, H.; Ying, H.; Chen, X. Thermal conductivity of twisted bilayer graphene. Nanoscale 2014, 6, 13402–13408. [Google Scholar] [CrossRef] [PubMed]
- Chenyang, L.; Bishwajit, D.; Xiaojian, T. Commensurate lattice constant dependent thermal conductivity of misoriented bilayer graphene. Carbon 2018, 138, 451–457. [Google Scholar]
- Pong, W.T.; Durkan, C. TOPICAL REVIEW: A review and outlook for an anomaly of scanning tunnelling microscopy (STM): Superlattices on graphite. J. Phys. D Appl. Phys. 2005, 38, R329. [Google Scholar] [CrossRef]
- Li, G.; Luican, A.; Santos, J.M.B.L.D. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2009, 6, 109–113. [Google Scholar] [CrossRef]
- Liao, M.; Wu, Z.W.; Du, L. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 2018, 9, 4068. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Yao, W.; Wang, E.; Bao, C. Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling. Talanta 2018, 184, 50. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366. [Google Scholar] [CrossRef]
- Su, L.; Yu, Y.; Cao, L. In Situ Monitoring of the Thermal-Annealing Effect in a Monolayer of MoS2. Phys. Rev. Appl. 2017, 7, 034009. [Google Scholar] [CrossRef]
- Su, L.; Yu, Y. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res. 2015, 8, 2686–2697. [Google Scholar] [CrossRef]
- Tongay, S.; Zhou, J.; Ataca, C. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831. [Google Scholar] [CrossRef]
- Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948. [Google Scholar] [CrossRef]
- Su, L.; Zhang, Y.; Yu, Y. Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale 2014, 6, 4920. [Google Scholar] [CrossRef]
- Sercombe, D.; Schwarz, S.; Pozozamudio, O.D. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489. [Google Scholar] [CrossRef]
- Giannazzo, F.; Sonde, S.; Nigro, R.L.; Rimini, E.; Raineri, V. Mapping the density of scattering centers limiting the electron mean free path in graphene. Nano Lett. 2011, 11, 4612–4618. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Yu, Z.; Ong, Z.; Pan, Y. Realization of Room-Temperature Phonon-Limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening. Adv. Mater. 2016, 28, 547–552. [Google Scholar] [CrossRef]
- Giannazzo, F. Engineering 2D heterojunctions with dielectrics. Nat. Electron. 2019, 2, 54–55. [Google Scholar] [CrossRef]
- Yue, N.; Sergio, G.A.; Riccardo, F. Thickness-Dependent Differential Reflectance Spectra of Monolayer and Few-Layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8, 725. [Google Scholar]
- Soh, D.B.S.; Rogers, C.; Gray, D.J. Optical nonlinearities of excitons in monolayer MoS2. Phys. Rev. B 2017, 97, 165111. [Google Scholar] [CrossRef]
- Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B: Condens. Matter 2012, 86, 2757–2764. [Google Scholar] [CrossRef]
- Qiu, H.; Pan, L.; Yao, Z. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 183. [Google Scholar]
- Das, S.; Chen, H.Y.; Penumatcha, A.V. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105. [Google Scholar] [CrossRef]
- Mak, K.F.; Mcgill, K.L.; Park, J. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492. [Google Scholar] [CrossRef]
- Sahoo, S.; Gaur, A.P.S.; Ahmadi, M. Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2. Physics 2013, 117, 9042–9047. [Google Scholar] [CrossRef]
- Wu, L.; Carrete, J.; Mingo, N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 2013, 103, 109. [Google Scholar]
- Liu, X.; Zhang, G.; Pei, Q.X. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 2013, 103, 1271. [Google Scholar] [CrossRef]
- Hone, J. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar]
- Splendiani, A.; Sun, L.; Zhang, Y. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Tonndorf, P.; Schmidt, R.; Bottger, P. Photoluminescence emission and Raman response of MoS2, MoSe2, and WSe2 nanolayers. Opt. Express 2013, 21, 4908–4916. [Google Scholar] [CrossRef]
- Mak, K.F.; He, K.; Lee, C. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q.; Yap, C.C.R. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Van, N.H.; Qian, Y.; Han, S.K. PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method. Sci. Rep. 2016, 6, 33096. [Google Scholar]
- Marta, B.; Leordean, C.; Istvan, T. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Appl. Surf. Sci. 2016, 363, 613–618. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Huang, X. A universal, rapid method for clean transfer of nanostructures onto various substrates. Acs Nano 2014, 8, 6563. [Google Scholar] [CrossRef]
- Yang, H.; Qin, S.Q.; Peng, G. Ultraviolet-Ozone treatment for effectively removing adhesive residue on graphene. Nano 2016, 11, 147. [Google Scholar] [CrossRef]
- Woods, C.R.; Withers, F. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 2016, 7, 10800. [Google Scholar] [CrossRef]
- Gao, L.; Ren, W.; Liu, B. Surface and Interference Coenhanced Raman Scattering of Graphene. ACS Nano 2009, 3, 933–939. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ni, Z.H.; Yu, T. Raman Studies of Monolayer Graphene: The Substrate Effect. J. Phys. Chem. C 2008, 112, 10637–10640. [Google Scholar] [CrossRef]
- Ellis, J.K.; Lucero, M.J.; Scuseria, G.E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 8207. [Google Scholar] [CrossRef]
- Timoshenko, S.; Woinowsky-Krieger, S.; Woinowsky, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959; Volume 2. [Google Scholar]
- Landau, L.; Pitaevskii, L.; Lifshitz, E.; Kosevich, A. Theory of Elasticity, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1959; p. 195. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, R.; Zheng, X.; Zhang, Y.; Zhang, X.; Deng, C.; Qin, S.; Yang, H. Interlayer Difference of Bilayer-Stacked MoS2 Structure: Probing by Photoluminescence and Raman Spectroscopy. Nanomaterials 2019, 9, 796. https://doi.org/10.3390/nano9050796
Zhang X, Zhang R, Zheng X, Zhang Y, Zhang X, Deng C, Qin S, Yang H. Interlayer Difference of Bilayer-Stacked MoS2 Structure: Probing by Photoluminescence and Raman Spectroscopy. Nanomaterials. 2019; 9(5):796. https://doi.org/10.3390/nano9050796
Chicago/Turabian StyleZhang, Xiangzhe, Renyan Zhang, Xiaoming Zheng, Yi Zhang, Xueao Zhang, Chuyun Deng, Shiqiao Qin, and Hang Yang. 2019. "Interlayer Difference of Bilayer-Stacked MoS2 Structure: Probing by Photoluminescence and Raman Spectroscopy" Nanomaterials 9, no. 5: 796. https://doi.org/10.3390/nano9050796
APA StyleZhang, X., Zhang, R., Zheng, X., Zhang, Y., Zhang, X., Deng, C., Qin, S., & Yang, H. (2019). Interlayer Difference of Bilayer-Stacked MoS2 Structure: Probing by Photoluminescence and Raman Spectroscopy. Nanomaterials, 9(5), 796. https://doi.org/10.3390/nano9050796