Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Reaction of TMV with Highly Hydrophobic Polymers
3.2. TMV Hydrophobization with Aliphatic Polyethers
3.3. TMV Hydrophobization with Block-Co-Polymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yan, H.; Park, S.H.; Finkelstein, G.; Reif, J.H.; LaBean, T.H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003, 301, 1882–1884. [Google Scholar] [CrossRef]
- Tseng, R.J.; Tsai, C.L.; Ma, L.P.; Ouyang, J.Y. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat. Nanotechnol. 2006, 1, 72–77. [Google Scholar] [CrossRef]
- Mao, C.B.; Solis, D.J.; Reiss, B.D.; Kottmann, S.T.; Sweeney, R.Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A.M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303, 213–217. [Google Scholar] [CrossRef]
- Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasova, P.; Stitz, N.; Sanctis, S.; Maurer, J.H.; Hoffmann, R.C.; Eiben, S.; Jeske, H.; Schneider, J.J.; Bill, J. Genetically improved monolayer-forming tobacco mosaic viruses to generate nanostructured semiconducting bio/inorganic hybrids. Langmuir 2015, 31, 3897–3903. [Google Scholar] [CrossRef] [PubMed]
- Wargacki, S.P.; Pate, B.; Vaia, R.A. Fabrication of 2D ordered films of tobacco mosaic virus (TMV): Processing morphology correlations for convective assembly. Langmuir 2008, 24, 5439–5444. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z. Evaporative Self-Assembly of Ordered Complex Structures; World Scientific: Singapore; Hackensack, NJ, USA, 2012; 380p. [Google Scholar]
- Lomonossoff, G.P.; Wege, C. Chapter Six—TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. In Advances in Virus Research; Palukaitis, P., Roossinck, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 149–176. [Google Scholar]
- Fan, X.Z.; Pomerantseva, E.; Gnerlich, M.; Brown, A.; Gerasopoulos, K.; McCarthy, M.; Culver, J.; Ghodssi, R. Tobacco mosaic virus: A biological building block for micro/nano/bio systems. J. Vac. Sci. Technol. A 2013, 31. [Google Scholar] [CrossRef]
- Atanasova, P.; Kim, I.; Chen, B.; Eiben, S.; Bill, J. Controllable virus-directed synthesis of nanostructured hybrids induced by organic/inorganic interactions. Adv. Biosys. 2017, 1, 1700106. [Google Scholar] [CrossRef]
- Bittner, A.M.; Alonso, J.M.; Górzny, M.L.; Wege, C. Nanoscale science and technology with plant viruses and bacteriophages. In Structure and Physics of Viruses: An Integrated Textbook; Mateu, M.G., Ed.; Springer Science+Business Media: Dordrecht, The Netherlands, 2013; pp. 667–702. [Google Scholar]
- Atanasova, P.; Rothenstein, D.; Schneider, J.J.; Hoffmann, R.C.; Dilfer, S.; Eiben, S.; Wege, C.; Jeske, H.; Bill, J. Virus-templated synthesis of ZnO nanostructures and formation of field-effect transistors. Adv. Mater. 2011, 23, 4918–4922. [Google Scholar] [CrossRef]
- Zang, F.H.; Gerasopoulos, K.; Fan, X.Z.; Brown, A.D.; Culver, J.N.; Ghodssi, R. An electrochemical sensor for selective TNT sensing based on tobacco mosaic virus-like particle binding agents. Chem. Commun. 2014, 50, 12977–12980. [Google Scholar] [CrossRef] [PubMed]
- Bruckman, M.A.; Liu, J.; Koley, G.; Li, Y.; Benicewicz, B.; Niu, Z.W.; Wang, Q.A. Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds. J. Mater. Chem. 2010, 20, 5715–5719. [Google Scholar] [CrossRef] [Green Version]
- Koch, C.; Eber, F.J.; Azucena, C.; Forste, A.; Walheim, S.; Schimmel, T.; Bittner, A.M.; Jeske, H.; Gliemann, H.; Eiben, S.; et al. Novel roles for well-known players: From tobacco mosaic virus pests to enzymatically active assemblies. Beilstein J. Nanotech. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Eiben, S.; Koch, C.; Altintoprak, K.; Southan, A.; Tovar, G.; Laschat, S.; Weiss, I.; Wege, C. Plant virus-based materials for biomedical applications: Trends and prospects. Adv. Drug Delivery Rev. 2018. [Google Scholar] [CrossRef]
- Chen, X.L.; Gerasopoulos, K.; Guo, J.C.; Brown, A.; Wang, C.S.; Ghodssi, R.; Culver, J.N. Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 2010, 4, 5366–5372. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Liu, J.; Lee, L.A.; Bruckman, M.A.; Zhao, D.; Koley, G.; Wang, Q. Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett. 2007, 7, 3729–3733. [Google Scholar] [CrossRef]
- Turpen, T.H.; Reinl, S.J.; Charoenvit, Y.; Hoffman, S.L.; Fallarme, V.; Grill, L.K. Malarial epitopes expressed on the surface of recombinant tobacco mosaic-virus. Biotechnology 1995, 13, 53–57. [Google Scholar] [PubMed]
- Lee, L.A.; Nguyen, Q.L.; Wu, L.; Horvath, G.; Nelson, R.S.; Wang, Q. Mutant plant viruses with cell binding motifs provide differential adhesion strengths and morphologies. Biomacromolecules 2012, 13, 422–431. [Google Scholar] [CrossRef]
- Lu, B.; Taraporewala, Z.F.; Stubbs, G.; Culver, J.N. Intersubunit interactions allowing a carboxylate mutant coat protein to inhibit tobamovirus disassembly. Virology 1998, 244, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Bendahmane, M.; Koo, M.; Karrer, E.; Beachy, R.N. Display of epitopes on the surface of tobacco mosaic virus: Impact of charge and isoelectric point of the epitope on virus-host interactions. J. Mol. Biol. 1999, 290, 9–20. [Google Scholar] [CrossRef]
- Zhou, K.; Li, F.; Dai, G.; Meng, C.; Wang, Q. Disulfide bond: Dramatically enhanced assembly capability and structural stability of tobacco mosaic virus nanorods. Biomacromolecules 2013, 14, 2593–2600. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, K.; Wang, Q. Tailoring the self-assembly behaviors of recombinant tobacco mosaic virus by rationally introducing covalent bonding at the protein–protein interface. Small 2016, 12, 4955–4959. [Google Scholar] [CrossRef]
- Chu, S.; Brown, A.D.; Culver, J.N.; Ghodssi, R. Tobacco mosaic virus as a versatile platform for molecular assembly and device fabrication. Biotechnol. J. 2018, 13, 1800147. [Google Scholar] [CrossRef]
- Schneider, A.; Eber, F.J.; Wenz, N.L.; Altintoprak, K.; Jeske, H.; Eiben, S.; Wege, C. Dynamic DNA-controlled “stop-and-go” assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes. Nanoscale 2016, 8, 19853–19866. [Google Scholar] [CrossRef] [PubMed]
- Geiger, F.C.; Eber, F.J.; Eiben, S.; Mueller, A.; Jeske, H.; Spatz, J.P.; Wege, C. TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 2013, 5, 3808–3816. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, S.X.; Sun, Y.Y.; Fang, X.S.; Wu, L.M. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41, 4356–4378. [Google Scholar] [CrossRef]
- Patil, A.J.; McGrath, N.; Barclay, J.E.; Evans, D.J.; Colfen, H.; Manners, I.; Perriman, A.W.; Mann, S. Liquid viruses by nanoscale engineering of capsid surfaces. Adv. Mater. 2012, 24, 4557–4563. [Google Scholar] [CrossRef]
- Gooding, G.V.; Hebert, T.T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 1967, 57, 1285. [Google Scholar]
- Atanasov, V.; Burger, M.; Lyonnard, S.; Porcar, L.; Kerres, J. Sulfonated poly(pentafluorostyrene): Synthesis & characterization. Solid State Ionics 2013, 252, 75–83. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012. [Google Scholar]
- Knez, M.; Sumser, M.P.; Bittner, A.M.; Wege, C.; Jeske, H.; Hoffmann, D.M.P.; Kuhnke, K.; Kern, K. Binding the tobacco mosaic virus to inorganic surfaces. Langmuir 2004, 20, 441–447. [Google Scholar] [CrossRef]
- Suljovrujic, E.; Micic, M. Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation. Nucl. Instrum. Meth. B 2015, 342, 206–214. [Google Scholar] [CrossRef]
- Schlick, T.L.; Ding, Z.B.; Kovacs, E.W.; Francis, M.B. Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 2005, 127, 3718–3723. [Google Scholar] [CrossRef] [PubMed]
- Holder, P.G.; Finley, D.T.; Stephanopoulos, N.; Walton, R.; Clark, D.S.; Francis, M.B. Dramatic Thermal stability of virus-polymer conjugates in hydrophobic solvents. Langmuir 2010, 26, 17383–17388. [Google Scholar] [CrossRef] [PubMed]
- Iha, R.K.; Van Horn, B.A.; Wooley, K.L. Complex, degradable polyester materials via ketoxime ether-based functionalization: Amphiphilic, multifunctional graft copolymers and their resulting solution-state aggregates. J. Polym. Sci. Pol. Chem. 2010, 48, 3553–3563. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanasova, P.; Atanasov, V.; Wittum, L.; Southan, A.; Choi, E.; Wege, C.; Kerres, J.; Eiben, S.; Bill, J. Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates. Nanomaterials 2019, 9, 800. https://doi.org/10.3390/nano9050800
Atanasova P, Atanasov V, Wittum L, Southan A, Choi E, Wege C, Kerres J, Eiben S, Bill J. Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates. Nanomaterials. 2019; 9(5):800. https://doi.org/10.3390/nano9050800
Chicago/Turabian StyleAtanasova, Petia, Vladimir Atanasov, Lisa Wittum, Alexander Southan, Eunjin Choi, Christina Wege, Jochen Kerres, Sabine Eiben, and Joachim Bill. 2019. "Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates" Nanomaterials 9, no. 5: 800. https://doi.org/10.3390/nano9050800
APA StyleAtanasova, P., Atanasov, V., Wittum, L., Southan, A., Choi, E., Wege, C., Kerres, J., Eiben, S., & Bill, J. (2019). Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates. Nanomaterials, 9(5), 800. https://doi.org/10.3390/nano9050800