Current Applications of Nanoemulsions in Cancer Therapeutics
Abstract
:1. Introduction
2. Nanoemulsions—A Brief Overview
2.1. Composition of the Nanoemulsions
2.2. Physical and Chemical Characterization of Nanoemulsions
2.3. Stability Studies
2.4. Nanoemulsion Drug Release
2.5. Nanoemulsion Production
2.5.1. High Pressure Homogenization
2.5.2. Microfluidization
2.5.3. Phase Inversion Temperature Technique
2.5.4. Solvent Displacement Method
2.5.5. Phase Inversion Composition Method (Self-Nanoemulsification Method)
2.6. Metabolism
3. Nanoemulsions Applied to Cancer Therapy
3.1. Nanoemulsions as a Strategy to Overcome MDR
3.2. Nanoemulsions for Different Types of Cancer
3.2.1. Nanoemulsions for Cancer Treatment
3.2.2. Nanoemulsion for Colon Cancer Therapy
3.2.3. Nanoemulsions for Ovarian Cancer Therapy
3.2.4. Nanoemulsion for Prostate Cancer Therapy
3.2.5. Nanoemulsions for Leukemia
3.2.6. Nanoemulsions for Breast Cancer
3.2.7. Nanoemulsions for Melanoma
3.2.8. Nanoemulsion for Lung Cancer Therapy
3.3. Nanoemulsions for Nanotheragnostics
3.4. Clinical Trials
4. Nanoemulsions in the Drug Delivery Field
5. Limitations of Nanoemulsions
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ganta, S.; Talekar, M.; Singh, A.; Coleman, T.P.; Amiji, M.M. Nanoemulsions in Translational Research—Opportunities and Challenges in Targeted Cancer Therapy. AAPS PharmSciTech 2014, 15, 694–708. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 6, 1719–1729. [Google Scholar] [CrossRef]
- Gi, H.J.; Chen, S.N.; Hwang, J.S.; Tien, C.; Kuo, M.T. Studies of Formation and Interface of Oil-Water Microemulsion. Chin. J. Phys. 1992, 30, 665–678. [Google Scholar]
- Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000, 65, 271–284. [Google Scholar] [CrossRef]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef]
- Tiwari, S.; Tan, Y.-M.; Amiji, M. Preparation and In Vitro Characterization of Multifunctional Nanoemulsions for Simultaneous MR Imaging and Targeted Drug Delivery. J. Biomed. Nanotechnol. 2006, 2, 217–224. [Google Scholar] [CrossRef]
- Arruebo, M.; Valladares, M.; González-Fernández, Á. Antibody-conjugated nanoparticles for biomedical applications. J. Nanomater. 2009, 2009, 1–24. [Google Scholar] [CrossRef]
- Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550. [Google Scholar] [CrossRef]
- Tan, W.; Wang, H.; Chen, Y.; Zhang, X.; Zhu, H.; Yang, C.; Yang, R.; Liu, C. Molecular aptamers for drug delivery. Trends Biotechnol. 2011, 29, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.X.; Karnik, R.; Wang, A.Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R.S.; Farokhzad, O.C. Targeted nanoparticles for cancer therapy. Nano Today 2007, 2, 14–21. [Google Scholar] [CrossRef]
- Parker, N.; Turk, M.J.; Westrick, E.; Lewis, J.D.; Low, P.S.; Leamon, C.P. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 2005, 338, 284–293. [Google Scholar] [CrossRef]
- Kumar, G.P.; Divya, A. Nanoemulsion Based Targeting in Cancer Therapeutics. Med. Chem. 2015, 5, 272–284. [Google Scholar]
- Elnakat, H. Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv. Drug Deliv. Rev. 2004, 56, 1067–1084. [Google Scholar] [CrossRef]
- Low, P.S.; Antony, A.C. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev. 2004, 56, 1055–1058. [Google Scholar] [CrossRef]
- Toub, N.; Malvy, C.; Fattal, E.; Couvreur, P. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed. Pharmacother. 2006, 60, 607–620. [Google Scholar] [CrossRef]
- Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, N.; Liu, X.; Liang, W.; Xu, W.; Torchilin, V.P. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J. Control. Release 2006, 112, 229–239. [Google Scholar] [CrossRef]
- Jain, R.K. Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. Science 2005, 307, 58–62. [Google Scholar] [CrossRef]
- Al-Abd, A.M.; Lee, S.H.; Kim, S.H.; Cha, J.-H.; Park, T.G.; Lee, S.J.; Kuh, H.-J. Penetration and efficacy of VEGF siRNA using polyelectrolyte complex micelles in a human solid tumor model in-vitro. J. Control. Release 2009, 137, 130–135. [Google Scholar] [CrossRef]
- Lin, A.; Slack, N.; Ahmad, A.; Koltover, I.; George, C.; Samuel, C.; Safinta, C. Structure and Structure—Function Studies of Lipid/Plasmid DNA Complexes. J. Drug Target. 2000, 8, 13–27. [Google Scholar] [CrossRef]
- Fattal, E.; Couvreur, P.; Dubernet, C. “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv. Drug Deliv. Rev. 2004, 56, 931–946. [Google Scholar] [CrossRef]
- Maranhao, R.; De Almeida, C.P.; Vital, C.G.; Contente, T.; Maria, D.A. Modification of composition of a nanoemulsion with different cholesteryl ester molecular species: Effects on stability, peroxidation, and cell uptake. Int. J. Nanomed. 2010, 5, 679. [Google Scholar] [CrossRef]
- Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir 2008, 24, 12758–12765. [Google Scholar] [CrossRef]
- McClements, D.J. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter 2011, 7, 2297–2316. [Google Scholar] [CrossRef]
- Dean, M. ABC Transporters, Drug Resistance, and Cancer Stem Cells. J. Mammary Gland Boil. Neoplasia 2009, 14, 3–9. [Google Scholar] [CrossRef]
- Talekar, M.; Ganta, S.; Singh, A.; Amiji, M.; Kendall, J.; Denny, W.A.; Garg, S. Phosphatidylinositol 3-kinase Inhibitor (PIK75) Containing Surface Functionalized Nanoemulsion for Enhanced Drug Delivery, Cytotoxicity and Pro-apoptotic Activity in Ovarian Cancer Cells. Pharm. Res. 2012, 29, 2874–2886. [Google Scholar] [CrossRef]
- Mohammad, I.S.; He, W.; Yin, L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother. 2018, 100, 335–348. [Google Scholar] [CrossRef]
- Chanamai, R.; McClements, D.J. Impact of Weighting Agents and Sucrose on Gravitational Separation of Beverage Emulsions. J. Agric. Food Chem. 2000, 48, 5561–5565. [Google Scholar] [CrossRef]
- McClements, D.J. Emulsion Design to Improve the Delivery of Functional Lipophilic Components. Annu. Rev. Food Sci. Technol. 2010, 1, 241–269. [Google Scholar] [CrossRef]
- Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204. [Google Scholar] [CrossRef]
- Wang, C.Y.; Huang, L. pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc. Natl. Acad. Sci. USA 1987, 84, 7851–7855. [Google Scholar] [CrossRef]
- Modi, S.; Anderson, B.D. Determination of Drug Release Kinetics from Nanoparticles: Overcoming Pitfalls of the Dynamic Dialysis Method. Mol. Pharm. 2013, 10, 3076–3089. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 2011, 25, 1000–1008. [Google Scholar] [CrossRef]
- Lovelyn, C.; Attama, A.A. Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol. 2011, 2, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.J.; Davis, S.S.; Illum, L. Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 1987, 3, 233–261. [Google Scholar] [PubMed]
- Wehrung, D.; Geldenhuys, W.J.; Oyewumi, M.O. Effects of gelucire content on stability, macrophage interaction and blood circulation of nanoparticles engineered from nanoemulsions. Colloids Surf. B Biointerfaces 2012, 94, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Zahr, A.S.; Davis, C.A.; Pishko, M.V. Macrophage Uptake of Core−Shell Nanoparticles Surface Modified with Poly(ethylene glycol). Langmuir 2006, 22, 8178–8185. [Google Scholar] [CrossRef]
- Stolnik, S.S.; Daudali, B.; Arien, A.; Whetstone, J.; Heald, C.; Garnett, M.; Davis, S.; Illum, L.; Garnett, M. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim. et Biophys. Acta (BBA)—Biomembr. 2001, 1514, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Lorenzo, C.; Rey-Rico, A.; Sosnik, A.; Taboada, P.; Concheiro, A. Poloxamine-based nanomaterials for drug delivery. Front. Biosci. 2010, 2, 424–440. [Google Scholar] [CrossRef]
- Ganta, S.; Deshpande, D.; Korde, A.; Amiji, M. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol. Membr. Boil. 2010, 27, 260–273. [Google Scholar] [CrossRef]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. Phys. Condens. Matter 2006, 18, R635–R666. [Google Scholar] [CrossRef]
- Qi, K.; Al-haideri, M.; Seo, T.; Carpentier, Y.A. Effects of particle size on blood clearance and tissue uptake of lipid emulsions with different triglyceride compositions. J. Parenter. Enter. Nutr. 2003, 27, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J. Introduction to the tumour microenvironment Review Series. J. Cell. Mol. Med. 2009, 13, 1403–1404. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Padera, T.P.; Stoll, B.R.; Tooredman, J.B.; Capen, D.; di Tomaso, E.; Jain, R.K. Pathology: Cancer cells compress intratumour vessels. Nature 2004, 427, 695. [Google Scholar] [CrossRef]
- Qadir, A.; Faiyazuddin, M.; Hussain, M.T.; Alshammari, T.M.; Shakeel, F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J. Mol. Liq. 2016, 214, 7–18. [Google Scholar] [CrossRef]
- Caron, W.P.; Lay, J.C.; Fong, A.M.; La-Beck, N.M.; Kumar, P.; Newman, S.E.; Zhou, H.; Monaco, J.H.; Clarke-Pearson, D.L.; Brewster, W.R.; et al. Translational Studies of Phenotypic Probes for the Mononuclear Phagocyte System and Liposomal Pharmacology. J. Pharmacol. Exp. Ther. 2013, 347, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.M.; Martin, F.J. Advantages of liposomal delivery systems for anthracyclines. Semin. Oncol. 2004, 31, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Björnmalm, M.; Thurecht, K.J.; Kent, S.J.; Parton, R.G.; Kavallaris, M.; Johnston, A.P.R.; Gooding, J.J.; Corrie, S.R.; Boyd, B.J.; et al. Europe PMC Funders Group Minimum Information Reporting in Bio—Nano Experimental Literature. Nat. Nanotechnol. 2019, 13, 777–785. [Google Scholar] [CrossRef]
- Yang, R.; Han, X.; Shi, K.; Cheng, G.; Shin, C.; Cui, F. Cationic formulation of paclitaxel-loaded poly d,l-lactic-co-glycolic acid (PLGA) nanoparticles using an emulsion-solvent diffusion method. J. Pharm. Sci. 2009, 4, 89–95. [Google Scholar]
- Kim, B.; Pena, C.D.; Auguste, D.T. Targeted Lipid Nanoemulsions Encapsulating Epigenetic Drugs Exhibit Selective Cytotoxicity on CDH1−/FOXM1+ Triple Negative Breast Cancer Cells. Mol. Pharm. 2019, 16, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Najlah, M.; Kadam, A.; Wan, K.; Ahmed, W.; Taylor, K.M.G.; Elhissi, A.M.A. Novel paclitaxel formulations solubilized by parenteral nutrition nanoemulsions for application against glioma cell lines. Int. J. Pharm. 2016, 506, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-B.; Chen, B.-H. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. Int. J. Nanomed. 2015, 10, 5059–5080. [Google Scholar]
- Klang, V.; Matsko, N.B.; Valenta, C.; Hofer, F. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 2012, 43, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.H. Drug targeting and tumor heterogeneity. J. Control Release 2009, 133, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Cappellani, M.R.; Perinelli, D.R.; Pescosolido, L.; Schoubben, A.; Cespi, M.; Cossi, R.; Blasi, P. Injectable nanoemulsions prepared by high pressure homogenization: Processing, sterilization, and size evolution. Appl. Nanosci. 2018, 8, 1483–1491. [Google Scholar] [CrossRef]
- Mahd, S.; Yinghe, J.; Bhesh, H. Optimization of nano-emulsions production by microfluidization. Eur. Food Res. Technol. 2007, 225, 733–741. [Google Scholar]
- Ren, G.; Sun, Z.; Wang, Z.; Zheng, X.; Xu, Z.; Sun, D. Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants. J. Colloid Interface Sci. 2019, 540, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Trimaille, T.; Chaix, C.; Delair, T.; Pichot, C.; Teixeira, H.; Dubernet, C.; Couvreur, P. Interfacial deposition of functionalized copolymers onto nanoemulsions produced by the solvent displacement method. Colloid Polym. Sci. 2001, 279, 784–792. [Google Scholar] [CrossRef]
- Lefebvre, G.; Riou, J.; Bastiat, G.; Roger, E.; Frombach, K.; Gimel, J.-C.; Saulnier, P.; Calvignac, B. Spontaneous nano-emulsification: Process optimization and modeling for the prediction of the nanoemulsion’s size and polydispersity. Int. J. Pharm. 2017, 534, 220–228. [Google Scholar] [CrossRef]
- Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014. [Google Scholar] [CrossRef]
- Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. Semin. Orig. Investig. 2008, 26, 57–64. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, Y.; Zhao, J.; Mao, L. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 2008, 41, 61–68. [Google Scholar] [CrossRef]
- Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm. 2010, 398, 190–203. [Google Scholar] [CrossRef]
- Milane, L.; Duan, Z.; Amiji, M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol. Pharm. 2011, 8, 185–203. [Google Scholar] [CrossRef]
- Xu, W.; Siddiqui, I.A.; Nihal, M.; Pilla, S.; Rosenthal, K.; Mukhtar, H.; Gong, S. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 2013, 34, 5244–5253. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Tang, S.; Chen, X.; Ding, F. Enhancing the receptor-mediated cell uptake of PLGA nanoparticle for targeted drug delivery by incorporation chitosan onto the particle surface. J. Nanopart. 2014, 16, 2453. [Google Scholar] [CrossRef]
- Gottesman, M.M. Mechanisms of Cancer Drug Resistance. Annu. Med. 2002, 53, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, M.; Spiers, J. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol. Res. 2007, 55, 1–15. [Google Scholar] [CrossRef]
- Ganta, S.; Singh, A.; Rawal, Y.; Cacaccio, J.; Patel, N.R.; Kulkarni, P.; Ferris, C.F.; Amiji, M.M.; Coleman, T.P. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer. Drug Deliv. 2016, 23, 958–970. [Google Scholar]
- Crown, J.; O’Leary, M.; Ooi, W.-S. Docetaxel and Paclitaxel in the treatment of breast cancer: A review of clinical experience. Oncologist 2004, 9, 24–32. [Google Scholar] [CrossRef]
- Meng, L.; Xia, X.; Yang, Y.; Ye, J.; Dong, W.; Ma, P.; Jin, Y.; Liu, Y. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int. J. Pharm. 2016, 513, 8–16. [Google Scholar] [CrossRef]
- Zheng, N.; Gao, Y.; Ji, H.; Wu, L.; Qi, X.; Liu, X.; Tang, J. Vitamin E derivative based multifunctional nanoemulsions for overcoming multidrug resistance in cancer. J. Drug Target 2016, 24, 1–27. [Google Scholar] [CrossRef]
- Tang, J.; Fu, Q.; Wang, Y.; Racette, K.; Wang, D.; Liu, F. Vitamin E Reverses Multidrug Resistance In Vitro and In Vivo. Cancer Lett. 2013, 336, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-M.J.; Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012, 83, 1104–1111. [Google Scholar] [CrossRef]
- Yu, H.; Xu, Z.; Chen, X.; Xu, L.; Yin, Q.; Zhang, Z.; Li, Y. Reversal of lung cancer multidrug resistance by pH-responsive micelleplexes mediating co-delivery of siRNA and paclitaxel. Macromol. Biosci. 2014, 14, 100–109. [Google Scholar] [CrossRef]
- Huang, R.-F.S.; Wei, Y.-J.; Inbaraj, B.S.; Chen, B.-H. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. Int. J. Nanomed. 2015, 10, 2823–2846. [Google Scholar]
- Cunningham, D.; Atkin, W.; Lenz, H.J.; Lynch, H.T.; Minsky, B.; Nordlinger, B.; Starling, N. Colorectal cancer. Lancet 2010, 375, 1030–1047. [Google Scholar] [CrossRef]
- Gottlieb, L.S.; Sternberg, S.S.; Bond, J.H.; Schapiro, M.; Panish, J.F.; Kurtz, R.C.; Shike, M.; Ackroyd, F.W.; Stewart, E.T.; Skolnick, M.; et al. Risk of Colorectal Cancer in the Families of Patients with Adenomatous Polyps. N. Engl. J. Med. 1996, 334, 82–87. [Google Scholar]
- Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell Boil. 2006, 7, 131–142. [Google Scholar] [CrossRef]
- Mein, J.R.; Lian, F.; Wang, X.-D. Biological activity of lycopene metabolites: Implications for cancer prevention. Nutr. Rev. 2008, 66, 667–683. [Google Scholar] [CrossRef]
- Chen, Y.J.; Inbaraj, B.S.; Pu, Y.S.; Chen, B.H. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability. Nanotechnology 2014, 25, 155102. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhang, G.; Zhang, R.; Flores, L.G.; Huang, Q.; Gelovani, J.G.; Li, C. Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res. 2010, 70, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Leu, J.G.; Chen, S.A.; Chen, H.M.; Wu, W.M.; Hung, C.F.; Yao, Y.D.; Tu, C.S.; Liang, Y.J. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and alpha-lipoic acid. Nanomedicine 2012, 8, 767–775. [Google Scholar] [CrossRef]
- Zhao, C.; Feng, Q.; Dou, Z.; Yuan, W.; Sui, C.; Zhang, X.; Xia, G.; Sun, H.; Ma, J. Local Targeted Therapy of Liver Metastasis from Colon Cancer by Galactosylated Liposome Encapsulated with Doxorubicin. PLoS ONE 2013, 8, e73860. [Google Scholar] [CrossRef]
- Neijt, J.P.; ten Bokkel Huinink, W.W.; van der Burg, M.E.L.; van Oosterom, A.T.; Willemse, P.H.B.; Vermorken, J.B.; van Lindert, A.C.M.; Heintz, A.P.M.; Aartsen, E.; van Lent, M.; et al. Long-term survival in ovarian cancer: Mature data from The Netherlands joint study group for ovarian cancer. Eur. J. Cancer Clin. Oncol. 1991, 27, 1367–1372. [Google Scholar] [CrossRef]
- Jamieson, E.R.; Lippard, S.J. Structure, Recognition, and Processing of Cisplatin−DNA Adducts. Chem. Rev. 1999, 99, 2467–2498. [Google Scholar] [CrossRef]
- Ganta, S.; Singh, A.; Patel, N.R.; Cacaccio, J.; Rawal, Y.H.; Davis, B.J.; Amiji, M.M.; Coleman, T.P. Development of EGFR Targeted Nanoemulsion for Imaging and Novel Platinum Therapy of Ovarian Cancer. Pharm. Res. 2014, 31, 2490–2502. [Google Scholar] [CrossRef]
- Cronin, M.; Dearden, J.; Duffy, J.; Edwards, R.; Manga, N.; Worth, A.; Worgan, A. The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSARs for toxicological endpoints. SAR QSAR Environ. 2002, 13, 167–176. [Google Scholar] [CrossRef]
- Ganta, S.; Amiji, M. Coadministration of Paclitaxel and Curcumin in Nanoemulsion Formulations To Overcome Multidrug Resistance in Tumor Cells. Mol. Pharm. 2009, 6, 928–939. [Google Scholar] [CrossRef]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nat. Cell Boil. 2001, 414, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Murali, R.; Varghese, B.A.; Nair, R.; Konrad, C.V. The role of cancer stem cells in tumor heterogeneity and resistance to therapy. Can. J. Physiol. Pharmacol. 2017, 95, 1–15. [Google Scholar] [Green Version]
- Ahmad, G.; El Sadda, R.; Botchkina, G.; Ojima, I.; Egan, J.; Amiji, M. Nanoemulsion Formulation of a Novel Taxoid DHA-SBT-1214 Inhibits Prostate Cancer Stem Cell-Induced Tumor Growth. Cancer Lett. 2017, 406, 71–80. [Google Scholar] [CrossRef]
- Gillet, J.-P.; Calcagno, A.M.; Varma, S.; Marino, M.; Green, L.J.; Vora, M.I.; Patel, C.; Orina, J.N.; Eliseeva, T.A.; Singal, V.; et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl. Acad. Sci. USA 2011, 108, 18708–18713. [Google Scholar] [CrossRef] [Green Version]
- Botchkina, G.I.; Zuniga, E.S.; Das, M.; Wang, Y.; Wang, H.; Zhu, S.; Savitt, A.G.; Rowehl, R.A.; Leyfman, Y.; Ju, J.; et al. New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumor-initiating cells. Mol. Cancer 2010, 9, 192. [Google Scholar] [CrossRef]
- Jones, R.J.; Hawkins, R.E.; Eatock, M.M.; Ferry, D.R.; Eskens, F.A.; Wilke, H.; Evans, T.R. A phase II open-label study of DHA-paclitaxel (Taxoprexin) by 2-h intravenous infusion in previously untreated patients with locally advanced or metastatic gastric or oesophageal adenocarcinoma. Cancer Chemother. Pharmacol. 2008, 61, 435–441. [Google Scholar] [CrossRef]
- Moura, J.A.; Valduga, C.J.; Tavares, E.R.; Kretzer, I.F.; Maria, D.A.; Maranhão, R.C. Novel formulation of a methotrexate derivative with a lipid nanoemulsion. Int. J. Nanomed. 2011, 6, 2285–2295. [Google Scholar]
- Winter, E.; Pizzol, C.D.; Locatelli, C.; Silva, A.H.; Conte, A.; Chiaradia-Delatorre, L.D.; Nunes, R.J.; Yunes, R.A.; Creckzynski-Pasa, T.B. In vitro and in vivo Effects of Free and Chalcones-Loaded Nanoemulsions: Insights and Challenges in Targeted Cancer Chemotherapies. Int. J. Environ. Res. Public Health 2014, 11, 10016–10035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem. 2016, 31, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Migotto, A.; Carvalho, V.F.M.; Salata, G.C.; Da Silva, F.W.M.; Yan, C.Y.I.; Ishida, K.; Costa-Lotufo, L.V.; Steiner, A.A.; Lopes, L.B. Multifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer. Drug Deliv. 2018, 25, 654–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natesan, S.; Sugumaran, A.; Ponnusamy, C.; Thiagarajan, V.; Palanichamy, R.; Kandasamya, R. Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animalmode. Int. J. Biol. Macromol. 2017, 104, 1846–1852. [Google Scholar] [CrossRef] [PubMed]
- Kretzer, I.F.; Maria, D.A.; Guido, M.C.; Contente, T.C.; Maranhão, R.C.; Maria, D. Simvastatin increases the antineoplastic actions of paclitaxel carried in lipid nanoemulsions in melanoma-bearing mice. Int. J. Nanomed. 2016, 11, 885–904. [Google Scholar] [Green Version]
- Favero, G.M.; Paz, J.L.; Otake, A.H.; Maria, D.A.; Caldini, E.G.; De Medeiros, R.S.; Deus, D.F.; Chammas, R.; Maranhão, R.C.; Bydlowski, S.P.; et al. Cell internalization of 7-ketocholesterol-containing nanoemulsion through LDL receptor reduces melanoma growth in vitro and in vivo: A preliminary report. Oncotarget 2018, 9, 14160–14174. [Google Scholar] [CrossRef]
- Monge-Fuentes, V.; Muehlmann, L.A.; Figueiró Longo, J.P.; Rodrigues Silva, J.; Fascineli, M.L.; de Souza, P.; Faria, F.; Anatolievich Degterev, I.; Rodriguez, A.; Pirani Carneiro, F.; et al. Photodynamic therapymediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J. Photochem. Photobiol. B Biol. 2017, 166, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Journo-Gershfeld, G.; Kapp, D.; Shamay, Y.; Kopeček, J.; David, A. Hyaluronan Oligomers-HPMA Copolymer Conjugates for Targeting Paclitaxel to CD44-Overexpressing Ovarian Carcinoma. Pharm. Res. 2012, 29, 1121–1133. [Google Scholar] [CrossRef]
- Liebmann, J.; Cook, J.; Mitchell, J. Cremophor EL, solvent for paclitaxel, and toxicity. Lancet 1993, 342, 1428. [Google Scholar] [CrossRef]
- Matsubara, Y.; Katoh, S.; Taniguchi, H.; Oka, M.; Kadota, J.; Kohno, S. Expression of CD44 Variants in Lung Cancer and Its Relationship to Hyaluronan Binding. J. Int. Med. 2000, 28, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Park, Y.-J. Improved Antitumor Efficacy of Hyaluronic Acid-Complexed Paclitaxel Nanoemulsions in Treating Non-Small Cell Lung Cancer. Biomol. Ther. 2017, 25, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2017, 2. [Google Scholar] [CrossRef]
- Fernandes, D.A.; Fernandes, D.D.; Li, Y.; Zhang, Z.; Rousseau, D.; Gradinaru, C.C.; Kolios, M.C.; Wang, Y. Synthesis of Stable Multifunctional Perfluorocarbon Nanoemulsions for Cancer Therapy and Imaging. Langmuir 2016, 32, 10870–10880. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Krstin, S.; Wink, M. Phytomedicine Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin. Phytomedicine 2018, 50, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, A.; Cavaco-Paulo, A. Size controlled protein nanoemulsions for cancer therapy. Cent. Biol. Eng. 2017, 45, 4710. [Google Scholar]
- Hsu, H.J.; Huang, R.F.; Kao, T.H.; Inbaraj, B.S.; Chen, B.H. Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells. Nanotechnology 2017, 28, 135103. [Google Scholar] [CrossRef]
- Chen, G.; Wang, K.; Wu, P.; Wang, Y.; Zhou, Z.; Yin, L.; Sun, M.; Oupický, D. Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Res. 2018, 11, 3746–3761. [Google Scholar] [CrossRef]
- Guan, Y.-B.; Zhou, S.-Y.; Zhang, Y.-Q.; Wang, J.-L.; Tian, Y.-D.; Jia, Y.-Y.; Sun, Y.-J. Therapeutic effects of curcumin nanoemulsions on prostate cancer. J. Huazhong Univ. Sci. Technol. 2017, 37, 371–378. [Google Scholar] [CrossRef]
- Tagami, T.; Ozeki, T. Recent Trends in Clinical Trials Related to Carrier-Based Drugs. J. Pharm. Sci. 2017, 106, 2219–2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Superficial Basal Cell Cancer’s Photodynamic Therapy: Comparing Three Photosensitizers: HAL and BF-200 ALA Versus MAL. Available online: https://ClinicalTrials.gov/show/NCT02367547 (accessed on 19 May 2019).
- Benaouda, S.; Jones, A.; Martin, G.P.; Brown, M.B. Localized Epidermal Drug Delivery Induced by Supramolecular Solvent Structuring. Mol. Pharm. 2016, 13, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Luan, L.; Chi, Z.; Liu, C. Chinese White Wax Solid Lipid Nanoparticles as a Novel Nanocarrier of Curcumin for Inhibiting the Formation of Staphylococcus aureus Biofilms. Nanomaterials 2019, 9, 763. [Google Scholar] [CrossRef]
- Curcumin in Reducing Joint Pain in Breast Cancer Survivors with Aromatase Inhibitor-Induced Joint Disease. Available online: https://ClinicalTrials.gov/show/NCT03865992 (accessed on 19 May 2019).
- Servitja, S.; Martos, T.; Sanz, M.R.; Garcia-Giralt, N.; Prieto-Alhambra, D.; Garrigos, L.; Nogues, X.; Tusquets, I. Skeletal adverse effects with aromatase inhibitors in early breast cancer: Evidence to date and clinical guidance. Ther. Adv. Med. Oncol. 2015, 7, 291–296. [Google Scholar] [CrossRef]
- Pilot Study of Curcumin for Women with Obesity and High Risk for Breast Cancer. Available online: https://ClinicalTrials.gov/show/NCT01975363 (accessed on 19 May 2019).
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018, 3, 7. [Google Scholar] [CrossRef]
- Neubi, G.M.N.; Opoku-Damoah, Y.; Gu, X.; Han, Y.; Zhou, J.; Ding, Y.; Damoah-Opoku, Y. Bio-inspired drug delivery systems: An emerging platform for targeted cancer therapy. Biomater. Sci. 2018, 6, 958–973. [Google Scholar] [CrossRef]
- Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.-M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446–465. [Google Scholar] [CrossRef]
- Jiao, M.; Zhang, P.; Meng, J.; Li, Y.; Liu, C.; Luo, X.; Gao, M. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater. Sci. 2018, 6, 726–745. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, D.; Wang, D.; Wang, Y.; Fu, Q.; Fallon, J.K.; Yang, X.; He, Z.; Liu, F. Combinational Delivery of Hydrophobic and Hydrophilic Anticancer Drugs in Single Nanoemulsions To Treat MDR in Cancer. Mol. Pharm. 2014, 11, 2623–2630. [Google Scholar] [CrossRef] [PubMed]
- Mahato, R. Nanoemulsion as Targeted Drug Delivery System for Cancer Therapeutics. J. Pharm. Sci. Pharmacol. 2017, 3, 83–97. [Google Scholar] [CrossRef]
- Chrastina, A.; Baron, V.T.; Abedinpour, P.; Rondeau, G.; Welsh, J.; Borgström, P. Plumbagin-Loaded Nanoemulsion Drug Delivery Formulation and Evaluation of Antiproliferative Effect on Prostate Cancer Cells. BioMed Res. Int. 2018, 2018, 9035452. [Google Scholar] [CrossRef] [PubMed]
- Deli, G.; Hatziantoniou, S.; Nikas, Y.; Demetzos, C. Solid lipid nanoparticles and nanoemulsions containing ceramides: Preparation and physicochemical characterization. J. Liposome 2009, 19, 180–188. [Google Scholar] [CrossRef]
- Verma, P.; Meher, J.G.; Asthana, S.; Pawar, V.K.; Chaurasia, M.; Chourasia, M.K. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Deliv. 2014, 23, 1–10. [Google Scholar] [CrossRef]
- Hörmann, K.; Zimmer, A. Drug delivery and drug targeting with parenteral lipid nanoemulsions—A review. J. Control. Release 2016, 223, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Clares, B.; Calpena, A.C.; Parra, A.; Abrego, G.; Alvarado, H.; Fangueiro, J.F.; Souto, E.B. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. Int. J. Pharm. 2014, 473, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Asmawi, A.A.; Salim, N.; Ngan, C.L.; Ahmad, H.; Abdulmalek, E.; Masarudin, M.J.; Rahman, M.B.A. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug. Deliv. Transl. Res. 2019, 9, 543–554. [Google Scholar] [CrossRef] [PubMed]
Nanoemulsion Constituents | Active Compound | Production Technique and Physicochemical Parameters | Type of Cancer | Therapeutic Efficacy and Other Observations | Ref. |
---|---|---|---|---|---|
Nanoemulsions carrying gold nanoparticles Tween 80® | Lychopene | Production using ultrasonication method; Average size: 25.0 nm; Zeta potential: −32.2 mV | Colon cancer | Nanoemulsions reduced the expressions of procaspases 8, 3, and 9 and PARP-1 and Bcl-2; Nanoemulsions enhanced Bax expression; Nanoemulsions increase HT-29 cell apoptosis and reduced their migration capability; Upregulation of epithelial marker E-cadherin and downregulation of Akt, nuclear factor kappa B, pro-matrix metalloproteinase (MMP)-2, and active MMP-9 expressions. | [79] |
EGFR-targeted nanoemulsion; EGFR binding peptide; Lipidated gadolinium (Gd) chelate; Lipidated EGFRbp; Egg lecithin; PEG2000DSPE; Glycerol | Myrisplatin: novel platinum pro-drug; C6-ceramide: pro-apoptotic agent | High shear microfluidization process; Average size: <150 nm; Stable in plasma for 24 h | Ovarian cancer | Efficacy was 50-fold drop in the IC50 in SKOV3 cells as compared to cisplatin alone; Improved efficacy over cisplatin nanoemulsions. | [90,116] |
Vitamin E nanoemulsions: composed of α-TOS, and vitamin E Brij 78 and TPGS | Paclitaxel | Preparation using emulsification–evaporation method; Average size: 236.7 nm; Polydispersity index: 0.29; Zeta potential: −23.9 mV; Drug loading: ≈1.04% | Multidrug resistance cancers | 30% of paclitaxel is release in vitro for the first 24 h; Nanoemulsions increase Bax cell levels of and decrease Bcl-2 expression and inhibit the transport function of P-gp and decrease mitochondrial potential in paclitaxel-resistant human ovarian carcinoma cell line A2780/Taxol. | [93] |
Taxoid pro-drug nanoemulsions: Lipoid E80®; Polysorbate 80; DSPE-PEG2000 | DHA-SBT-1214 (omega-3 fatty acid conjugated taxoid pro-drug) | Production using HPH technique; Average size: 228 ± 7 nm; Zeta potential: −27 mV; Entrapment efficiency: 97% | Prostate cancer | Nanoemulsion surface was modified with PEG; Weekly intravenous administration of nanoemulsions in mice bearing subcutaneous PPT2 tumor xenografts suppressed tumor growth compared to Abraxane®; Nanoemulsions show significant activity against prostate CD133high/CD44+/high tumor-initiating cells in vitro and in vivo. | [96] |
Lipid nanoemulsion: mixture of phosphatidylcholine, triolein, and cholesteryloleate | Didodecyl methotrexate (ddMTX, esterification reaction between methotrexate and dodecyl bromide) | Production using ultrasonication method; Average size: 60 nm; Entrapment efficiency: 98%; Nanoemulsions were stable at 4 °C for 45 days | Leukemia | After 48 h of incubation with plasma, approximately 28% ddMTX was released; Nanoemulsion uptake by neoplastic cells was higher than free methotrexate which resulted in markedly greater cytotoxicity; Nanoemulsions cytotoxicity against neoplastic cells was higher than free methotrexate. | [100] |
Lipid nanoemulsions: Miglyol 812; Lipoid S75; Polysorbate 80 | Chalcone | Production using ultrasonication method; Average size: 110 nm; PI: 0.17; ZP: −19 mV, 93% EE | Leukemia | Nanoemulsions maintained the antileukemic effect of chalcones; Nanoemulsions decreased chalcone toxic effects in non-tumoral cells and in animals. | [101] |
Hyaluronic acid complexed nanoemulsions: DL-α-tocopheryl acetate; Soybean oil; Polysorbate 80; Ferric chloride | Paclitaxel | Production using HPH technique; Average size: 85.2 nm; ZP: −35.7 mV; EE: ≈100% | Lung cancer | Hyaluronic acid nanoemulsions inhibited tumor growth, probably because of the specific tumor-targeting affinity of HA for CD44-overexpressed cancer cells. | [111] |
Lipid nanoemulsion (7KCLDE): Egg phosphatidylcholine; Triolein; Cholesteryl oleate; Cholesterol | 7-ketocholesterol | Average size: 20–50 nm | Melanoma | Single 7KCLDE injection killed ≈10% of melanoma cells; 7KCLDE was injected into B16 melanoma tumor-bearing mice, was accumulated in the liver and tumor. In melanoma tumor in mice 7KCLDE promoted a >50% tumoral size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. | [106] |
Folic acid targeted albumin nanoemulsions; Albumin; Folic acid; Poloxamer 407 | Carbon monoxide releasing molecule-2 (CORM-2) | Production using HPH technique; Average size: <100 nm | Lymphoma | Nanoemulsions increased survival of BALB/c mice bearing subcutaneous A20 lymphoma tumors. | [117] |
Perfluorohexane nanoemulsions | Perfluorocarbon (contrast agent) | Production using ultrasonication method; Average size: <100 nm; Suitable long-term stability | Ultrasound and photoacoustic imaging of cancer in vivo | Higher spatial resolution and deeper tissue (compared to conventional optical techniques); Non-invasive cancer imaging and therapy alternative for patients. | [115] |
Carotenoid; Nanoemulsions; CapryolTM 90; Transcutol®HP; Tween 80 | Carotenoid extract from Lycium barbarum L. | Production using ultrasonication method; Average size: 15.1 nm | Colon cancer | Nanoemulsions release carotenoids in the acidic environment (characteristic of tumors) but not at physiological pH; Nanoemulsions IC50 of 4.5 μg/mL; Nanoemulsions upregulate p53 and p21 expression and down-regulate CDK2, CDK1, cyclin A, and cyclin B expression and arrest the cell cycle at G2/M in HT-29 colon cancer cells. | [118] |
Perfluorocarbon nanoemulsions; Perfluorodecalin; Fluorinated poly(ethylenimine) | siRNA to silence the expression of Bcl2 gene | Production using ultrasonication method (for nanoemulsions); Formation of polyplexes using nanoemulsions and siRNA; Average size: ≈150 nm; ZP: +50 mV; One week stability | Melanoma | Nanoemulsions-based polyplexes induced apoptosis and inhibited tumor growth in a melanoma mouse model; Nanoemulsions-based polyplexes showed potential for in vivo ultrasound imaging. | [119] |
Curcumin nanoemulsions; Medium chain tryglicerides; Cremophor RH40; Glycerol | Curcumin | Self-microemulsifying method; Average size: 34.5 nm; Polidispersity index: 0.129; ZP: −8.54 mV | Prostate cancer | Curcumin nanoemulsions enhance the cellular cytotoxicity, cellular uptake, cell cycle arrest, and apoptosis against prostate cancer cells. | [120] |
ClinicalTrial.gov ID | Active Compound | Nanoemulsion Constituents | Sponsor and Collaborators | Description | Status | Ref. |
---|---|---|---|---|---|---|
NCT02367547 | 5-Aminolevulinic acid | Soy phosphatidyl-choline; Propylene glycol | Joint Authority for Päijät-Häme Social and Health Care; Tampere University; University of Jyvaskyla | Photodynamic therapy against superficial basal cell cancer. | Active, not recruiting | [122] |
NCT03865992 | Curcumin | Data not available | City of Hope Medical Center; National Cancer Institute (NCI) | Oral curcumin nanoemulsion for joint pain reduction in breast cancer survivors caused by treatment with aromatase inhibitors. | Recruiting | [125] |
NCT01975363 | Curcumin | Data not available | Ohio State University Comprehensive Cancer Center | Oral curcumin nanoemulsion to modulate pro-inflammatory biomarkers in plasma and breast adipose tissue. | Active, not recruiting | [127] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-López, E.; Guerra, M.; Dias-Ferreira, J.; Lopez-Machado, A.; Ettcheto, M.; Cano, A.; Espina, M.; Camins, A.; Garcia, M.L.; Souto, E.B. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials 2019, 9, 821. https://doi.org/10.3390/nano9060821
Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, Espina M, Camins A, Garcia ML, Souto EB. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials. 2019; 9(6):821. https://doi.org/10.3390/nano9060821
Chicago/Turabian StyleSánchez-López, Elena, Mariana Guerra, João Dias-Ferreira, Ana Lopez-Machado, Miren Ettcheto, Amanda Cano, Marta Espina, Antoni Camins, Maria Luisa Garcia, and Eliana B. Souto. 2019. "Current Applications of Nanoemulsions in Cancer Therapeutics" Nanomaterials 9, no. 6: 821. https://doi.org/10.3390/nano9060821
APA StyleSánchez-López, E., Guerra, M., Dias-Ferreira, J., Lopez-Machado, A., Ettcheto, M., Cano, A., Espina, M., Camins, A., Garcia, M. L., & Souto, E. B. (2019). Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials, 9(6), 821. https://doi.org/10.3390/nano9060821