The Synthesis of the Pomegranate-Shaped α-Fe2O3 Using an In Situ Corrosion Method of Scorodite and Its Gas-Sensitive Property
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis
2.3. Characterization
2.4. Gas-Sensing Test
3. Results and Discussion
3.1. Characterization of Scorodite Precursor
3.2. Characterization of Samples
3.3. Morphology of S1 and S2
3.4. Analysis of the Forming Process of the Pomegranate Structure
3.5. BET Analysis of S1
3.6. Gas-Sensitive Properties of Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z.L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871. [Google Scholar] [CrossRef]
- Gaidi, M.; Chenevier, B.; Labeau, M. Electrical properties evolution under reducing gaseous mixtures (H2, H2S, CO) of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors. Sens. Actuators B Chem. 2000, 62, 43–48. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M.D.; Ruoff, R.S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. Acs Nano 2011, 5, 3333–3338. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Tjoa, V.; Fan, H.M.; Tan, H.R.; Sayle, D.C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C.H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 2012, 134, 4905–4917. [Google Scholar] [CrossRef] [PubMed]
- Sakai, G.; Matsunaga, G.; Shimanoe, K.; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B Chem. 2001, 80, 125–131. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ha, S.C.; Kim, K.; Yang, H.; Choi, S.Y.; Kim, Y.T.; Park, J.T.; Lee, C.H.; Choi, J.; Paek, J. Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl. Phys. Lett. 2005, 86, 213105. [Google Scholar] [CrossRef]
- Savage, N.O.; Akbar, S.A.; Dutta, P.K. Titanium dioxide based high temperature carbon monoxide selective sensor. Sens. Actuators B Chem. 2001, 72, 239–248. [Google Scholar] [CrossRef]
- Virji, S.; Fowler, J.D.; Baker, C.O.; Huang, J.; Kaner, R.B.; Weiller, B.H. Polyaniline nanofiber composites with metal salts: Chemical sensors for hydrogen sulfide. Small 2005, 1, 624–627. [Google Scholar] [CrossRef]
- Albrecht, M.; Gossage, R.A.; Lutz, M.; Spek, A.L.; Koten, G. Diagnostic organometallic and metallodendritic materials for SO2 gas detection: Reversible binding of sulfur dioxide to arylplatinum (II) complexes. Chem.-Eur. J. 2000, 6, 1431–1445. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, Y.; Wei, W. Xylene sensor based on α-MoO3 nanobelts with fast response and low operating temperature. RSC Adv. 2015, 5, 18655–18659. [Google Scholar] [CrossRef]
- Oettingen, W.F.; Neal, P.A.; Donahue, D.D. The toxicity and potential dangers of toluene: Preliminary report. JAMA 1942, 118, 579–584. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, P.; Hu, W. Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 2015, 44, 2087–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abaker, M.; Umar, A.; Baskoutas, S.; Dar, G.; Zaidi, S.A.; Sayari, S.; Hajry, A.; Kim, S.; Hwang, S. A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids. J. Phys. D Appl. Phys. 2011, 44, 425401. [Google Scholar] [CrossRef]
- Umar, A.; Abaker, M.; Faisal, M.; Hwang, S.; Baskoutas, S.; Sayari, S. High-yield synthesis of well-crystalline α-Fe2O3 nanoparticles: Structural, optical and photocatalytic properties. J. Nanosci. Nanotechnol. 2011, 11, 3474–3480. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Chueh, Y.L.; Hsieh, C.H.; Chang, M.T.; Chou, L.J.; Wang, Z.L.; Lan, Y.W.; Chen, C.D.; Kurata, H.; Isoda, S. p-Type α-Fe2O3 Nanowires and their n-Type Transition in a Reductive Ambient. Small 2007, 3, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, L.; Li, W.; Gou, X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582–586. [Google Scholar] [CrossRef]
- Shinde, S.; Bansode, R.; Bhosale, C.; Rajpure, K. Physical properties of hematite α-Fe2O3 thin films: Application to photoelectrochemical solar cells. J. Semicond. 2011, 32, 013001. [Google Scholar] [CrossRef]
- Hu, X.; Yu, J.C. Continuous Aspect-Ratio Tuning and Fine Shape Control of Monodisperse α-Fe2O3 Nanocrystals by a Programmed Microwave–Hydrothermal Method. Adv. Funct. Mater. 2008, 18, 880–887. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, Y.; Wang, Y.; Bao, F.; Zhou, L.; Wei, X.; Zhang, Y.; Zheng, Q. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B 2006, 110, 3093–3097. [Google Scholar] [CrossRef]
- Sun, Z.; Yuan, H.; Liu, Z.; Han, B.; Zhang, X. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 2005, 17, 2993–2997. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Han, W.; Wellburn, D.; Liang, J.; Liu, C. Synthesis and magnetic properties of Fe2O3-TiO2 nano-composite particles using pulsed laser gas phase evaporation–liquid phase collecting method. Appl. Surf. Sci. 2013, 283, 422–429. [Google Scholar] [CrossRef]
- Wang, L.; Lou, Z.; Deng, J.; Zhang, R.; Zhang, T. Ethanol gas detection using a yolk-shell (core-shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 2015, 7, 13098–13104. [Google Scholar] [CrossRef] [PubMed]
- Balogun, M.S.; Wu, Z.; Luo, Y.; Qiu, W.; Fan, X.; Long, B.; Huang, M.; Liu, P.; Tong, Y. High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. J. Power Sour. 2016, 308, 7–17. [Google Scholar] [CrossRef]
- Cao, K.; Jiao, L.; Liu, H.; Liu, Y.; Wang, Y.; Guo, Z.; Yuan, H. 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1401421. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Guo, W.; Chen, S. The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J. Alloy Compd. 2016, 685, 84–90. [Google Scholar] [CrossRef]
- Fujita, T.; Taguchi, R.; Abumiya, M.; Matsumoto, M.; Shibata, E.; Nakamura, T. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I. Hydrometallurgy 2008, 90, 92–102. [Google Scholar] [CrossRef]
- Fujita, T.; Taguchi, R.; Abumiya, M.; Matsumoto, M.; Shibata, E.; Nakamura, T. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part II. Eff. Temp. Air Hydrometall. 2008, 90, 85–91. [Google Scholar] [CrossRef]
- Okibe, N.; Koga, M.; Morishita, S.; Tanaka, M.; Heguri, S.; Asano, S.; Sasaki, K.; Hirajima, T. Microbial formation of crystalline scorodite for treatment of As (III)-bearing copper refinery process solution using Acidianus brierleyi. Hydrometallurgy 2014, 143, 34–41. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, X.; Zhou, L.; Li, S.; Qin, G. Pt-doped α-Fe2O3 photoanodes prepared by a magnetron sputtering method for photoelectrochemical water splitting. Mater. Res. Bull. 2017, 91, 214–219. [Google Scholar] [CrossRef]
- Patil, D.; Patil, V.; Patil, P. Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods. Sens. Actuators B Chem. 2011, 152, 299–306. [Google Scholar] [CrossRef]
- Hua, J.; Gengsheng, J. Hydrothermal synthesis and characterization of monodisperse α-Fe2O3 nanoparticles. Mater. Lett. 2009, 63, 2725–2727. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Li, Y.; Jia, D.; Xie, J. Directed synthesis of TiO2 nanorods and their photocatalytic activity. Ceram. Int. 2014, 40, 11735–11742. [Google Scholar] [CrossRef]
- Endo, A.; Yamaura, T.; Yamashita, K.; Matsuoka, F.; Hihara, E.; Daiguji, H. Water adsorption–desorption isotherms of two-dimensional hexagonal mesoporous silica around freezing point. J. Colloid Interface Sci. 2012, 367, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zhuang, H.; Zhang, T. Visible-light-activated nanocomposite photocatalyst of Fe2O3/SnO2. Mater. Lett. 2008, 62, 1126–1128. [Google Scholar] [CrossRef]
- Li, D.; Haneda, H. Photocatalysis of sprayed nitrogen-containing Fe2O3–ZnO and WO3–ZnO composite powders in gas-phase acetaldehyde decomposition. J. Photochem. Photobiol. A 2003, 160, 203–212. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Y.; Jia, D.; Wang, Y.; Xie, J. Solid-state chemical synthesis of mesoporous α-Fe2O3 nanostructures with enhanced xylene-sensing properties. Sens. Actuators B Chem. 2014, 198, 360–365. [Google Scholar] [CrossRef]
- Galstyan, V. Porous TiO2-based gas sensors for cyber chemical systems to provide security and medical diagnosis. Sensors 2017, 17, 2947. [Google Scholar] [CrossRef]
- Suematsu, K.; Watanabe, K.; Yuasa, M. Effect of Ambient Oxygen Partial Pressure on the Hydrogen Response of SnO2 Semiconductor Gas. Sensors. J. Electrochem. Soc. 2019, 166, B618–B622. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tang, X.; Cao, S.; Chen, X.; Rong, Z. The Synthesis of the Pomegranate-Shaped α-Fe2O3 Using an In Situ Corrosion Method of Scorodite and Its Gas-Sensitive Property. Nanomaterials 2019, 9, 977. https://doi.org/10.3390/nano9070977
Wang Y, Tang X, Cao S, Chen X, Rong Z. The Synthesis of the Pomegranate-Shaped α-Fe2O3 Using an In Situ Corrosion Method of Scorodite and Its Gas-Sensitive Property. Nanomaterials. 2019; 9(7):977. https://doi.org/10.3390/nano9070977
Chicago/Turabian StyleWang, Yang, Xincun Tang, Shan Cao, Xi Chen, and Zhihao Rong. 2019. "The Synthesis of the Pomegranate-Shaped α-Fe2O3 Using an In Situ Corrosion Method of Scorodite and Its Gas-Sensitive Property" Nanomaterials 9, no. 7: 977. https://doi.org/10.3390/nano9070977
APA StyleWang, Y., Tang, X., Cao, S., Chen, X., & Rong, Z. (2019). The Synthesis of the Pomegranate-Shaped α-Fe2O3 Using an In Situ Corrosion Method of Scorodite and Its Gas-Sensitive Property. Nanomaterials, 9(7), 977. https://doi.org/10.3390/nano9070977