Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors
Abstract
:1. Introduction
2. Method
3. Sweat
3.1. Emotional Sweating Physiology
3.2. Electrochemical Biomarkers from the Sweat
4. Volatile Organic Components (VOCs)
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Todd, J.H.; Atema, J.; Bardach, J.E. Chemical communication in the social behavior of a fish, the yellow bullhead (Ictalurus natalis). Science 1967, 3, 672–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenta, J.G.; Rigby, M.K. Discrimination of the odor of stressed rats. Science 1968, 161, 599–601. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Haviland-Jones, J. Human olfactory communication of emotion. Percept. Mot. Skills 2000, 91, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Ackerl, K.; Atzmueller, M.; Grammer, K. The scent of fear. Neuro Endocrinol. Lett. 2002, 23, 79–84. [Google Scholar]
- Novaco, R.W. Anger. In Stress: Concepts, Cognition, Emotion, and Behavior: Handbook of Stress, 1st ed.; Fink, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 35, pp. 285–292. [Google Scholar] [CrossRef]
- Benderly, B.L. Aroma driven: On the trail of our most emotional sense. Health 1988, 20, 62–65. [Google Scholar]
- Hui, T.K.L.; Sherratt, R.S. Coverage of emotion recognition for common wearable biosensors. Biosensors 2018, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Happy, S.L.; Routray, A. The fusion of electroencephalography and facial expression for continuous emotion recognition. IEEE Trans. Affect. Comput. 2015, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, Z.; Wang, C.; Liu, S.; Chi, W.; Dong, E.; Song, X.; Gao, Q.; Song, Y. The fusion of electroencephalography and facial expression for continuous emotion recognition. IEEE Access 2019, 7, 155724–155736. [Google Scholar] [CrossRef]
- Yang, N.; Dey, N.; Sherratt, S.; Shi, F. Recognize basic emotional states in speech by machine learning techniques using Mel-frequency cepstral coefficient features. J. Intell. Fuzzy Syst. 2020, in press. [Google Scholar]
- World Health Organization. Available online: https://www.who.int/occupational_health/topics/stressatwp/en (accessed on 4 December 2019).
- Singh, A.; Kaushik, A.; Kumar, R.; Nair, M.; Bhansali, S. Electrochemical sensing of cortisol: A recent update. Appl. Biochem. Biotechnol. 2014, 174, 1115–1126. [Google Scholar] [CrossRef] [Green Version]
- Hung, H.; Picard, R.W. Automating the recognition of stress and emotion: From lab to real-world impact. IEEE Multimed. 2016, 23, 3–7. [Google Scholar] [CrossRef]
- Cano-López, I.; González-Bono, E. Cortisol levels and seizures in adults with epilepsy: A systematic review. Neurosci. Biobehav. Rev. 2019, 103, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Picard, R.W.; Healey, J. Affective wearables. Pers. Ubiquitous Comput. 1997, 1, 231–240. [Google Scholar] [CrossRef]
- Stress and Your Health: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/ency/article/003211.htm (accessed on 4 December 2019).
- Bergman, A.L.; Christopher, M.S.; Bowen, S. Changes in facets of mindfulness predict stress and anger outcomes for police officers. Mindfulness 2016, 7, 851–858. [Google Scholar] [CrossRef]
- Strasshofer, D.R.; Peterson, Z.D.; Beagley, M.C.; Galovski, T.E. Investigating the relationship between posttraumatic stress symptoms and posttraumatic growth following community violence: The role of anger. Psychol. Trauma: Theory Res. Pract. Policy 2018, 10, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Tsukuda, M.; Nishiyama, Y.; Kawai, S.; Okumura, Y. Identifying stress markers in skin gases by analysing gas collected from subjects undergoing the Trier social stress test and performing statistical analysis. J. Breath Res. 2019, 13. [Google Scholar] [CrossRef]
- Mannion, P. Using Biosensors for Wearable Stress and Seizure Detection. Available online: https://www.edn.com/using-biosensors-for-wearable-stress-and-seizure-detection (accessed on 20 December 2019).
- Kumar, M.T.; Kumar, R.S.; Kumar, K.P.; Prasanna, S.; Shiva, G. Health monitoring and stress detection system. Int. Res. J. Eng. Technol. 2019, 6, 90–93. [Google Scholar]
- Gu, Y.; Cleeren, E.; Dan, J.; Claes, K.; Van Paesschen, W.; Van Huffel, S.; Hunyadi, B. Comparison between scalp EEG and behind-the-ear EEG for development of a wearable seizure detection system for patients with focal Epilepsy. Sensors 2018, 18, 29. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Wilke, K.; Martin, A.; Terstegen, L.; Biel, S.S. A short history of sweat gland biology. Int. J. Cosmet. Sci. 2007, 29, 169–179. [Google Scholar] [CrossRef]
- Machado-Moreira, C.A.; Taylor, N.A.S. Psychological sweating from glabrous and nonglabrous skin surfaces under thermoneutral conditions. Psychophysiology 2012, 49, 369–374. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerassidis, S. Is palmar and plantar sweating thermoregulatory? Acta Physiol. Scand. 1994, 152, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Asahina, M.; Suzuki, A.; Mori, M.; Kanesaka, T.; Hattori, T. Emotional sweating response in a patient with bilateral amygdala damage. Int. J. Psychophys. 2003, 47, 87–93. [Google Scholar] [CrossRef]
- Lonsdale-Eccles, A.; Leonard, N.; Lawrence, C. Axillary hyperhidrosis: Eccrine or apocrine? Clin. Exp. Dermatol. 2003, 28, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, Y.; Tamura, N.; Ohkuma, A.; Yoshimaru, K.; Shimazu, K. Idiopathic pure sudomotor failure: Anhidrosis due to deficits in cholinergic transmission. Neurology 2004, 63, 1476–1480. [Google Scholar] [CrossRef]
- Barbieri, A.; Bimonte, S.; Palma, G.; Luciano, A.; Rea, D.; Giudice, A.; Scognamiglio, G.; La Mantia, E.; Franco, R.; Perdonà, S.; et al. The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int. J. Oncol. 2015, 47, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Pollard, T.M. Physiological consequences of everyday psychosocial stress. Coll. Antropol. 1997, 21, 17–28. [Google Scholar]
- Lathe, R. Anti-Stress Hormones. Available online: www.pieta-research.org/ClipPDF/ELBA22.pdf (accessed on 4 December 2019).
- Ranabir, S.; Reetu, K. Stress and hormones. Indian J. Endocrinol. Metab. 2011, 15, 18. [Google Scholar] [CrossRef]
- Jia, M.; Chew, W.M.; Feinstein, Y.; Skeath, P.; Sternberg, E.M. Quantification of cortisol in human eccrine sweat by liquid chromatography-tandem mass spectrometry. Analyst 2016, 141, 2053–2060. [Google Scholar] [CrossRef] [Green Version]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S.H.M. The detection of cortisol in human sweat: Implications for measurement of cortisol in hair. Ther. Drug Monit. 2014, 36, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Munje, R.D.; Muthukumar, S.; Prasad, S. Interfacial tuning for detection of cortisol in sweat using ZnO thin films for wearable biosensing. In Proceedings of the Nanotechnology Materials and Devices Conference IEEE, Toulouse, France, 9–12 October 2016. [Google Scholar] [CrossRef]
- Kinnamon, D.; Ghanta, R.; Lin, K.C.; Muthukumar, S.; Prasad, S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, P.; Upasham, S.; Jagannath, B.; Manuel, R.; Pali, M.; Prasad, S. CortiWatch: Watch-based cortisol tracker. Future Sci. 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuteja, S.K.; Ormsby, C.; Neethirajan, S. Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano Micro Lett. 2018, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.F.D.; Norena, N.; Kaushik, A.; Bhansali, S. A low-cost miniaturized potentiostat for point-of-care diagnosis. Biosen Bioelectron. 2014, 62, 249–254. [Google Scholar] [CrossRef]
- Sankhala, D.; Muthukumar, S.; Prasad, S. A four-channel electrical impedance spectroscopy module for cortisol biosensing in sweat-based wearable applications. SLAS Technol. 2018, 23, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Dalirirad, S.; Steckl, A.J. Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens. Actuators B Chem. 2019, 283, 79–86. [Google Scholar] [CrossRef]
- García-cortés, A.; Martí, J.; Sayago, I.; Santos, J.P.; Gutiérrez, J.; Horrillo, M.C. Detection of stress through sweat analysis with an electronic nose. In Proceedings of the Spanish Conference on Electron Devices IEEE, Santiago de Compostela, Spain, 11–13 February 2009. [Google Scholar] [CrossRef]
- Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Mugo, S.M.; Alberkant, J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal. Bioanal. Chem. 2020, 412, 1825–1833. [Google Scholar] [CrossRef]
- Runyon, J.R.; Jia, M.; Goldstein, M.R.; Skeath, P.; Abrell, L.; Chorover, J.; Sternberg, E.M. Dynamic behavior of cortisol and cortisol metabolites in human eccrine sweat. Int. J. Progn. Health Manag. 2019, 10, 1–11. [Google Scholar]
- Uvnäs-Moberg, K.; Petersson, M. Oxytocin, ein vermittler von antistress, wohlbefinden, sozialer interaktion, wachstum und heilung/Oxytocin, a mediator of anti-stress, well-being, social interaction, growth and healing. Psychosom. Med. Psychother. 2005, 51, 57–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mervinetsky, E.; Alshanski, I.; Tadi, K.K.; Dianat, A.; Buchwald, J.; Gutierrez, R.; Cuniberti, G.; Hurevich, M.; Yitzchaik, S. A zinc selective oxytocin based biosensor. J. Mater. Chem. B 2020, 8, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.C.; Yao, D.J. Intelligent gas-sensing systems and their applications. J. Micromech. Microeng. 2018, 28. [Google Scholar] [CrossRef]
- Sekine, Y.; Toyooka, S.; Watts, S.F. Determination of acetaldehyde and acetone emanating from human skin using a passive flux aampler-HPLC system. J. Chromatogr. B 2007, 859, 201–207. [Google Scholar] [CrossRef]
- De Groot, J.H.B.; Smeets, M.A.M.; Semin, G.R. Rapid stress system drives chemical transfer of fear from sender to receiver. PLoS ONE 2015, 10, e0128717. [Google Scholar] [CrossRef]
- Martin, H.J.; Turner, M.A.; Bandelow, S.; Edwards, L.; Riazanskaia, S.; Thomas, C.L.P. Volatile organic compound markers of psychological stress in skin: A pilot study. J. Breath Res. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Broza, Y.Y.; Zuri, L.; Haick, H. Combined volatolomics for monitoring of human body chemistry. Sci. Rep. 2014, 4, 2–7. [Google Scholar] [CrossRef]
- Ganguly, A.; Rice, P.; Lin, K.C.; Muthukumar, S.; Prasad, S.A. Combinatorial electrochemical biosensor for sweat biomarker benchmarking. SLAS Technol. 2019. [Google Scholar] [CrossRef]
- Cho, B.; Lee, K.; Pyo, S.; Kim, J. Fabrication and characterization of VOC sensor array based on SnO2 and ZnO nanoparticles functionalized by metalloporphyrins. Micro Nano Syst. Lett. 2018, 6. [Google Scholar] [CrossRef]
- Ireson, C.R.; Kelland, L.R. Discovery and development of anticancer aptamers. Mol. Cancer Ther. 2006, 5, 2957–2962. [Google Scholar] [CrossRef] [Green Version]
- Song, K.M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, J.R.; Racher, A.J. Antibody production. Adv. Drug Del. Rev. 2006, 58, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.S.M.; Missailidis, S. Aptamer-based therapeutics and their potential in radiopharmaceutical design. Braz. Arch. Biol. Technol. 2007, 50, 63–76. [Google Scholar] [CrossRef]
- Jayasena, S.D. Aptamers: An emerging class of molecules rhat rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [CrossRef] [Green Version]
- Ramstrom, O.; Ye, L.; Mosback, K. Artificial antibodies to corticoste-roids prepared by molecular imprinting. Chem. Biol. 1996, 3, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Mugo, S.M. Nano-sized structured platforms for facile solid-phase nanoextraction for molecular capture and (bio)chemical analysis. Nanomater. Des. Sens. Appl. 2019, 153–195. [Google Scholar] [CrossRef]
- Shelley, W.B.; Hurley, H.J. The physiology of the human axillary apocrine sweat gland. J. Investig. Dermatol. 1953, 20, 285–297. [Google Scholar] [CrossRef] [Green Version]
Compound | CAS No | m/z | Retention Time (min) | ‘Under Stress Task’ vs. ‘Relax1’ | ‘Under Stress Task’ vs. ‘Relax2’ | ||
---|---|---|---|---|---|---|---|
AUC Value | p-Value (Wilcoxon’s Sign Rank Test) | AUC Value | p-Value (Wilcoxon’s Sign Rank Test) | ||||
1,2-Ethanediol | 107-21-1 | 33.1 | 25.6 | 0.82 | <0.001 | 0.69 | <0.001 |
Acetophenone | 98-86-2 | 105 | 26.7 | 0.84 | 0.001 21 | 0.69 | 0.0019 23 |
Heptadecane | 629-78-7 | 57.1 | 27.6 | 0.81 | 0.003 15 | 0.60 | 0.674 22 |
Hexanedionic acid, dimethyl ester | 627-93-0 | 114.1 | 29.5 | 0.88 | <0.001 | 0.74 | 0.0042 |
Benzyl alcohol | 100-51-6 | 79.1 | 30.2 | 0.81 | <0.001 | 0.75 | <0.001 |
Benzothiazole | 95-16-9 | 135 | 31.4 | 0.87 | <0.001 | 0.66 | 0.153 65 |
Biomarkers | Methods | Place | Wearable Available | Potential Device |
---|---|---|---|---|
Cortisol [37,39,40,41,43,44,45,55,56] | Antibodies, aptamers, e-nose, and the molecularly selective organic electrochemical transistor | Eccrine glands (antibodies, aptamers and MIPs) Apocrine (e-nose) | Wrist band + patch | e-nose + Flexible |
Cortisol metabolites [34,47] | In labs only | Eccrine glands | No | Flexible |
Stress antihormones [49] | Zn+ ions | Eccrine glands | No | Flexible |
VOCs (study 1) benzoic acid, n-decanoic acid, a xylene isomer, and 3-carene [53] | Lab (GC/MS) | Eccrine glands (or skin) (forehead) | No | E-nose/gas array sensors |
VOCs (study 2) 1,2-Ethanediol Acetophenone Heptadecane Hexanedioic acid, dimethyl ester Benzyl alcohol Benzothiazole [19] | Lab (GC/MS) | Underarms skin or apocrine glands | No | e-nose/gas array sensors |
Factors/Techniques | Antibodies | Aptamers | MIP |
---|---|---|---|
Selectivity | High selectivity to cortisol—no errors have been reported | High selectivity to cortisol—no errors have been reported | High selectivity to cortisol—no errors have been reported |
Sensitivity | In the physiological range | In the physiological range | The highest sensitivity (0.1 ng/mL) |
Thermal stability | The lowest | High stability | The highest |
Immune response | Can be rejected by the immune system | Cannot be rejected | Cannot be rejected |
Cost | Expensive | Less expensive | Cheapest |
Reference | Stress Biomarker | Technique | Concentration | Volume | Within the Physiological Range of 8.16 to 141.7 ng/m? (Yes/No) |
---|---|---|---|---|---|
[37] | Cortisol | Cortisol antibodies | 1 ng/mL to 200 ng/mL | N/A | Yes |
[38] | Cortisol | Cortisol antibodies | N/A | 1–5 μL | Yes |
[39] | Cortisol | Cortisol antibodies | 1 ng/mL to 150 ng/mL | N/A | Yes |
[40] | Cortisol | Cortisol antibodies | 0.1 ng/mL | N/A | Yes |
[41] | Cortisol | Cortisol antibodies | 1.24 μM | N/A | Yes |
[42] | Cortisol | Cortisol antibodies | N/A | 1–3 μL | Yes |
[43] | Cortisol | Cortisol aptamers | 1 ng/mL | N/A | Yes |
[44] | Cortisol | E-nose | 5 mL–50 mL | N/A | Yes |
[45] | Cortisol | MIPs | 0.1 μM–1 μM | N/A | Yes |
[46] | Cortisol | MIPs | 10 ng/mL–66 ng/mL | N/A | Yes |
[19,53] | Stress VOCs | GC/MS | N/A | N/A | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamkah, A.; Hui, T.; Andrews, S.; Dey, N.; Shi, F.; Sherratt, R.S. Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors. Biosensors 2020, 10, 40. https://doi.org/10.3390/bios10040040
Zamkah A, Hui T, Andrews S, Dey N, Shi F, Sherratt RS. Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors. Biosensors. 2020; 10(4):40. https://doi.org/10.3390/bios10040040
Chicago/Turabian StyleZamkah, Abdulaziz, Terence Hui, Simon Andrews, Nilanjan Dey, Fuqian Shi, and R. Simon Sherratt. 2020. "Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors" Biosensors 10, no. 4: 40. https://doi.org/10.3390/bios10040040
APA StyleZamkah, A., Hui, T., Andrews, S., Dey, N., Shi, F., & Sherratt, R. S. (2020). Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors. Biosensors, 10(4), 40. https://doi.org/10.3390/bios10040040