Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview
Abstract
:1. Introduction
2. Electrochemical Biosensors for the Detection of E. coli O157:H7
2.1. Voltammetric-Based Biosensors
2.2. Impedimetric Based Biosensors
2.3. Amperometric-Based Biosensors
2.4. Potentiometric-Based Portable Baiosensors
2.5. Nanoimpact Method
3. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Tarditto, L.V.; Arévalo, F.J.; Zon, M.A.; Ovando, H.G.; Vettorazzi, N.R.; Fernández, H. Electrochemical sensor for the determination of enterotoxigenic Escherichia coli in swine feces using glassy carbon electrodes modified with multi-walled carbon nanotubes. Microchem. J. 2016, 127, 220–225. [Google Scholar] [CrossRef]
- Banerjee, T.; Sulthana, S.; Shelby, T.; Heckert, B.; Jewell, J.; Woody, K.; Karimnia, V.; McAfee, J.; Santra, S. Multiparametric magneto-fluorescent nanosensors for the ultrasensitive detection of Escherichia coli O157: H7. ACS Infect. Dis. 2016, 2, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.U.; Jo, E.-J.; Mun, H.; Noh, Y.; Kim, M.-G. Ultrasensitive detection of Escherichia coli O157: H7 by immunomagnetic separation and selective filtration with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate signal amplification. J. Agric. Food Chem. 2018, 66, 4941–4947. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhu, F.; Guo, W.; Gu, H.; Zhao, J.; Yan, M.; Liu, S. Selective capture and rapid identification of E. coli O157: H7 by carbon nanotube multilayer biosensors and microfluidic chip-based LAMP. RSC Adv. 2017, 7, 30446–30452. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Huang, X.; Li, J.; Shan, S.; Lai, W.; Xiong, Y. A novel fluorescence immunoassay for the sensitive detection of Escherichia coli O157: H7 in milk based on catalase-mediated fluorescence quenching of CdTe quantum dots. Anal. Chim. Acta 2016, 947, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-T.; Settu, K.; Tsai, J.-Z.; Chen, C.-J. Impedance sensor for rapid enumeration of E. coli in milk samples. Electrochim. Acta 2015, 182, 89–95. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Mao, Y.; Fang, Z.; Lu, X.; Zeng, L. A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta 2015, 861, 62–68. [Google Scholar] [CrossRef]
- Chen, M.; Yu, Z.; Liu, D.; Peng, T.; Liu, K.; Wang, S.; Xiong, Y.; Wei, H.; Xu, H.; Lai, W. Dual gold nanoparticle lateflow immunoassay for sensitive detection of Escherichia coli O157: H7. Anal. Chim. Acta 2015, 876, 71–76. [Google Scholar] [CrossRef]
- Mortality and Burden of Disease from Water and Sanitation. Available online: https://www.who.int/gho/phe/water_sanitation/burden_text/en/ (accessed on 1 April 2020).
- World Health Organization. WHO’s Work on Food Safety. Available online: https://www.who.int/health-topics/food-safety/ (accessed on 15 May 2020).
- Ngamsom, B.; Truyts, A.; Fourie, L.; Kumar, S.; Tarn, M.D.; Iles, A.; Moodley, K.; Land, K.J.; Pamme, N. A microfluidic device for rapid screening of E. coli O157: H7 based on IFAST and ATP bioluminescence assay for water analysis. Chem. Eur. J. 2017, 23, 12754–12757. [Google Scholar] [CrossRef]
- Clements, A.; Young, J.C.; Constantinou, N.; Frankel, G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 2012, 3, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-W.; Hsu, B.-M.; Su, Y.-J.; Ji, D.-D.; Lin, W.-C.; Chen, J.-L.; Shih, F.-C.; Kao, P.-M.; Chiu, Y.-C. Occurrence of diarrheagenic Escherichia coli genes in raw water of water treatment plants. Environ. Sci. Pollut. Res. 2012, 19, 2776–2783. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Barizuddin, S.; Wuliji, T.; El-Dweik, M. A rapid and highly specific immunofluorescence method to detect Escherichia coli O157: H7 in infected meat samples. Int. J. Food Microbiol. 2016, 231, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Huang, Y.; Wang, J.; Zhang, L.; Rong, Y.; Lai, W.; Chen, T. A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157: H7. RSC Adv. 2015, 5, 45092–45097. [Google Scholar] [CrossRef]
- Padola, N.L.; Etcheverría, A.I. Shiga toxin-producing Escherichia coli in human, cattle, and foods. Strategies for detection and control. Front. Cell. Infect. Microbiol. 2014, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Wendel, A.M.; Johnson, D.H.; Sharapov, U.; Grant, J.; Archer, J.R.; Monson, T.; Koschmann, C.; Davis, J.P. Multistate outbreak of Escherichia coli O157: H7 infection associated with consumption of packaged spinach, August–September 2006: The Wisconsin investigation. Clin. Infect. Dis. 2009, 48, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Ten, S.; Hashim, U.; Gopinath, S.; Liu, W.; Foo, K.; Sam, S.; Rahman, S.; Voon, C.; Nordin, A. Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures. Biosens. Bioelectron. 2017, 93, 146–154. [Google Scholar] [CrossRef]
- Andrews, W.H.; Jacobson, A.; Hammack, T. Bacteriological Analytical Manual (BAM); AOAC International: Rockville, MD, USA, 2011. [Google Scholar]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741. [Google Scholar] [CrossRef]
- Schüller, S.; Phillips, A.D. Microaerobic conditions enhance type III secretion and adherence of enterohaemorrhagic Escherichia coli to polarized human intestinal epithelial cells. Environ. Microbiol. 2010, 12, 2426–2435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Sikora, U.; Ozcan, A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 2012, 137, 2541–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menne, J.; Nitschke, M.; Stingele, R.; Abu-Tair, M.; Beneke, J.; Bramstedt, J.; Bremer, J.P.; Brunkhorst, R.; Busch, V.; Dengler, R. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104: H4 induced haemolytic uraemic syndrome: Case-control study. BMJ 2012, 345, e4565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, J.; Ai, J.; Zhang, Y.; Geng, X.; Gao, Q.; Cheng, Z. Signal-off impedimetric immunosensor for the detection of Escherichia coli O157: H7. Sci. Rep. 2016, 6, 19806. [Google Scholar] [CrossRef]
- Song, C.; Li, J.; Liu, J.; Liu, Q. Simple sensitive rapid detection of Escherichia coli O157: H7 in food samples by label-free immunofluorescence strip sensor. Talanta 2016, 156, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M.; Kim, S.; Ryu, S. Sensitive detection of viable Escherichia coli O157: H7 from foods using a luciferase-reporter phage phiV10lux. Int. J. Food Microbiol. 2017, 254, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, H.; Hao, H.; Gong, Q.; Nie, K. Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sens. Actuators B Chem. 2016, 229, 297–304. [Google Scholar] [CrossRef]
- Ravan, H.; Amandadi, M.; Sanadgol, N. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157: H7. Microb. Pathog. 2016, 91, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Lei, C.; Guo, L.; Zhou, Y. Separable detecting of Escherichia coli O157H: H7 by a giant magneto-resistance-based bio-sensing system. Sens. Actuators B Chem. 2016, 234, 485–492. [Google Scholar] [CrossRef]
- Gracias, K.S.; McKillip, J.L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 2004, 50, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zou, S.; Cao, X. A simple dendrimer-aptamer based microfluidic platform for E. coli O157: H7 detection and signal intensification by rolling circle amplification. Sens. Actuators B Chem. 2017, 251, 976–984. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Bie, S.; Suo, T.; Jia, G.; Liu, B.; Ye, R.; Li, Z. Development of an electrochemical biosensor for rapid and effective detection of pathogenic Escherichia coli in licorice extract. Appl. Sci. 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, R.; Li, Y. Electrochemical biosensors for rapid detection of Escherichia coli O157: H7. Talanta 2017, 162, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.P. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [Green Version]
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- da Silva, E.T.; Souto, D.E.; Barragan, J.T.; de F. Giarola, J.; de Moraes, A.C.; Kubota, L.T. Electrochemical biosensors in point-of-care devices: Recent advances and future trends. ChemElectroChem 2017, 4, 778–794. [Google Scholar] [CrossRef]
- Srivastava, K.R.; Awasthi, S.; Mishra, P.K.; Srivastava, P.K. Biosensors/molecular tools for detection of waterborne pathogens. In Waterborne Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 237–277. [Google Scholar]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Anal. Lett. 2001, 34, 635–659. [Google Scholar] [CrossRef] [Green Version]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical sensors for clinic analysis. Sensors 2008, 8, 2043–2081. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar] [PubMed] [Green Version]
- Mehrotra, P. Biosensors and their applications–A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Kavita, V. DNA biosensors—A review. J. Bioeng. Biomed. Sci. 2017, 7, 222. [Google Scholar]
- Kumar, S.; Nehra, M.; Mehta, J.; Dilbaghi, N.; Marrazza, G.; Kaushik, A. Point-of-care strategies for detection of waterborne pathogens. Sensors 2019, 19, 4476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobed, A.; Baradaran, B.; de la Guardia, M.; Agazadeh, M.; Hasanzadeh, M.; Rezaee, M.A.; Mosafer, J.; Mokhtarzadeh, A.; Hamblin, M.R. Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. TrAC Trends Anal. Chem. 2019, 113, 157–171. [Google Scholar] [CrossRef]
- Cinti, S.; Volpe, G.; Piermarini, S.; Delibato, E.; Palleschi, G. Electrochemical biosensors for rapid detection of foodborne Salmonella: A critical overview. Sensors 2017, 17, 1910. [Google Scholar] [CrossRef]
- Pandey, V.K.; Mishra, P.K. Nanoconjugates for detection of waterborne bacterial pathogens. In Waterborne Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 363–384. [Google Scholar]
- Wang, Y.; Fewins, P.A.; Alocilja, E.C. Electrochemical immunosensor using nanoparticle-based signal enhancement for Escherichia coli O157: H7 detection. IEEE Sens. J. 2015, 15, 4692–4699. [Google Scholar] [CrossRef]
- Housaindokht, M.R.; Verdian, A.; Sheikhzadeh, E.; Pordeli, P.; Rouhbakhsh Zaeri, Z.; Janati Fard, F.; NOSRATI, M.; Mashreghi, M.; Haghparast, A.; Nakhaei Pour, A. A sensitive electrochemical aptasensor based on single wall carbon nanotube modified screen printed electrode for detection of Escherichia coli O157: H7. Adv. Mater. Lett. 2018, 9, 369–374. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Liu, S.; Yu, J.; Wang, H.; Cui, M.; Huang, J. Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157: H7 with signal amplification on a SG–PEDOT–AuNPs electrode interface. Analyst 2015, 140, 551–559. [Google Scholar] [CrossRef]
- Tiwari, I.; Singh, M.; Pandey, C.M.; Sumana, G. Electrochemical detection of a pathogenic Escherichia coli specific DNA sequence based on a graphene oxide–chitosan composite decorated with nickel ferrite nanoparticles. RSC Adv. 2015, 5, 67115–67124. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.Q.; Ishiki, K.; Shiigi, H. Single cell immunodetection of Escherichia coli O157: H7 on an indium-tin-oxide electrode by using an electrochemical label with an organic-inorganic nanostructure. Microchim. Acta 2018, 185, 465. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhian, S.; Ranjbar, S. Aptamer immobilization on amino-functionalized metal–organic frameworks: An ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157: H7. Analyst 2018, 143, 3191–3201. [Google Scholar] [CrossRef] [PubMed]
- Shoaie, N.; Forouzandeh, M.; Omidfar, K. Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles. Microchim. Acta 2018, 185, 217. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.A.B.; Ahmed, N.A.; Abd-Wahab, F.; Ramli, N.I.; Salim, W.W.A.W. Detection of Nonspecific Binding of E. coli O157: H7 on Reduced Graphene Oxide Screen-Printed Carbon Electrodes Using Electrochemical Methods. Preprints 2018, 2018100631. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, L.; Yang, H.; Cheng, C.; Deng, W.; Tan, Y.; Xie, Q.; Yao, S. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157: H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens. Bioelectron. 2019, 126, 493–500. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Huang, H.; Deng, J.; Fang, L.; Luo, J.; Zhang, S.; Huang, J.; Liang, W.; Zheng, J. A sensitive electrochemical strategy via multiple amplification reactions for the detection of E. coli O157: H7. Biosens. Bioelectron. 2020, 147, 111752. [Google Scholar] [CrossRef]
- Xu, M.; Wang, R.; Li, Y. Rapid detection of Escherichia coli O157: H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 2016, 148, 200–208. [Google Scholar] [CrossRef]
- Dos Santos, M.B.; Azevedo, S.; Agusil, J.; Prieto-Simón, B.; Sporer, C.; Torrents, E.; Juárez, A.; Teixeira, V.; Samitier, J. Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry 2015, 101, 146–152. [Google Scholar] [CrossRef]
- Pandey, C.M.; Tiwari, I.; Singh, V.N.; Sood, K.; Sumana, G.; Malhotra, B.D. Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria. Sens. Actuators B Chem. 2017, 238, 1060–1069. [Google Scholar] [CrossRef]
- Yao, L.; Wang, L.; Huang, F.; Cai, G.; Xi, X.; Lin, J. A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157: H7. Sens. Actuators B Chem. 2018, 259, 1013–1021. [Google Scholar] [CrossRef]
- Li, Z.; Fu, Y.; Fang, W.; Li, Y. Electrochemical impedance immunosensor based on self-assembled monolayers for rapid detection of Escherichia coli O157: H7 with signal amplification using lectin. Sensors 2015, 15, 19212–19224. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Y.; Lei, C.; Sun, X.-c.; Zhou, Y. Ultrasensitive detection and quantification of E. coli O157: H7 using a giant magnetoimpedance sensor in an open-surface microfluidic cavity covered with an antibody-modified gold surface. Microchim. Acta 2016, 183, 1831–1837. [Google Scholar] [CrossRef]
- Dastider, S.G.; Barizuddin, S.; Yuksek, N.; Dweik, M.; Almasri, M. Impedance Biosensor for Rapid Detection of Low Concentration of E. coli 0157: H7. In Proceedings of the IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 302–306. [Google Scholar]
- Abdullah, A.; Jasim, I.; Alalem, M.; Dweik, M.; Almasri, M. MEMS Based Impedance Biosensor for Rapid Detection of Low Concentrations of Foodborne Pathogens. In Proceedings of the IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 381–385. [Google Scholar]
- Wang, R.; Lum, J.; Callaway, Z.; Lin, J.; Bottje, W.; Li, Y. A label-free impedance immunosensor using screen-printed interdigitated electrodes and magnetic nanobeads for the detection of E. coli O157: H7. Biosensors 2015, 5, 791–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Bhardwaj, S.K.; Sharma, A.L.; Kim, K.-H.; Deep, A. Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite. Environ. Res. 2019, 171, 395–402. [Google Scholar] [CrossRef]
- Wang, L.; Huang, F.; Cai, G.; Yao, L.; Zhang, H.; Lin, J. An electrochemical aptasensor using coaxial capillary with magnetic nanoparticle, urease catalysis and PCB electrode for rapid and sensitive detection of Escherichia coli O157: H7. Nanotheranostics 2017, 1, 403. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, R.; Prusty, A.K.; Roy, U.; Bhand, S. A capacitive DNA sensor for sensitive detection of Escherichia coli O157: H7 in potable water based on the z3276 genetic marker: Fabrication and analytical performance. Analyst 2020, 145, 2267–2278. [Google Scholar] [CrossRef]
- Cimafonte, M.; Fulgione, A.; Gaglione, R.; Papaianni, M.; Capparelli, R.; Arciello, A.; Bolletti Censi, S.; Borriello, G.; Velotta, R.; Della Ventura, B. Screen printed based impedimetric immunosensor for rapid detection of Escherichia coli in drinking water. Sensors 2020, 20, 274. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhang, Y.; Dong, K.; Wen, J.; Zheng, C.; Zhao, S. Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection of Escherichia coli O157: H7. Int. J. Electrochem. Sci 2017, 12, 3443–3458. [Google Scholar] [CrossRef]
- Hassan, A.-R.; de la Escosura-Muñiz, A.; Merkoçi, A. Highly sensitive and rapid determination of Escherichia coli O157: H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens. Bioelectron. 2015, 67, 511–515. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, G.; Dou, W. An electrochemical immunoassay for Escherichia coli O157: H7 using double functionalized Au@ Pt/SiO2 nanocomposites and immune magnetic nanoparticles. Talanta 2018, 182, 354–362. [Google Scholar] [CrossRef]
- Güner, A.; Çevik, E.; Şenel, M.; Alpsoy, L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem. 2017, 229, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Deng, J.; Fang, L.; Yu, K.; Huang, H.; Jiang, L.; Liang, W.; Zheng, J. A novel electrochemical DNA biosensor based on HRP-mimicking hemin/G-quadruplex wrapped GOx nanocomposites as tag for detection of Escherichia coli O157: H7. Biosens. Bioelectron. 2015, 63, 1–6. [Google Scholar] [CrossRef]
- Zhu, F.; Zhao, G.; Dou, W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157: H7 using Au@ Pt and graphene. Anal. Biochem. 2018, 559, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Abdalhai, M.H.; Fernandes, A.n.M.; Xia, X.; Musa, A.; Ji, J.; Sun, X. Electrochemical genosensor to detect pathogenic bacteria (Escherichia coli O157: H7) as applied in real food samples (fresh beef) to improve food safety and quality control. J. Agric. Food Chem. 2015, 63, 5017–5025. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, R.; Li, Y. An electrochemical biosensor for rapid detection of E. coli O157: H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. Analyst 2016, 141, 5441–5449. [Google Scholar] [CrossRef] [Green Version]
- Rajapaksha, R.; Hashim, U.; Uda, M.A.; Fernando, C.; De Silva, S. Target ssDNA detection of E. coli O157: H7 through electrical based DNA biosensor. Microsyst. Technol. 2017, 23, 5771–5780. [Google Scholar] [CrossRef]
- Wang, Y.; Alocilja, E.C. Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J. Biol. Eng. 2015, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, N.; Pandey, C.M.; Soni, A.; Tiwari, I.; Rosillo-Lopez, M.; Salzmann, C.G.; Malhotra, B.D.; Sumana, G. Electrochemical genosensor based on carboxylated graphene for detection of water-borne pathogen. Sens. Actuators B Chem. 2018, 275, 312–321. [Google Scholar] [CrossRef]
- Das, R.; Chaterjee, B.; Kapil, A.; Sharma, T.K. Aptamer-NanoZyme mediated sensing platform for the rapid detection of Escherichia coli in fruit juice. Sens. Bio-Sens. Res. 2020, 27, 100313. [Google Scholar] [CrossRef]
- Shaibani, P.M.; Etayash, H.; Jiang, K.; Sohrabi, A.; Hassanpourfard, M.; Naicker, S.; Sadrzadeh, M.; Thundat, T. Portable nanofiber-light addressable potentiometric sensor for rapid Escherichia coli detection in orange juice. ACS Sens. 2018, 3, 815–822. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E.; Stricker, S. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2000, 12, 317–325. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Rees, N.V.; Compton, R.G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem. Int. Ed. 2011, 50, 4219–4221. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, B.-K.; Kang, M.; Park, J.H. Label-free detection of single living bacteria via electrochemical collision event. Sci. Rep. 2016, 6, 30022. [Google Scholar] [CrossRef] [PubMed]
- Couto, R.A.; Chen, L.; Kuss, S.; Compton, R.G. Detection of Escherichia coli bacteria by impact electrochemistry. Analyst 2018, 143, 4840–4843. [Google Scholar] [CrossRef] [PubMed]
Feature | Requirement |
---|---|
Sensitivity | A biosensor should have the ability to detect the pathogen at very low infective dosage |
Specificity | A biosensor should be able to discriminate between the target molecule and nontarget molecules |
Robustness (durability) | A biosensor should have the ability to withstand different conditions, such as changes in temperature, etc. |
Detection time | Analysis time should be minimal for real-time response |
Reproducibility | The result should be reproducible over the period of time without failure |
Ease of use | The biosensor should not require specific operator skills |
Accuracy | A biosensor should not have should not have false-negative or false-positive results |
Cost-effectiveness | The biosensor should be inexpensive |
Method | Assay Strategy | Material Type | Technique | LOD | Linear Range | Ref. |
---|---|---|---|---|---|---|
Voltammetric | Immunosensor | Au NPs | SWV | 10 CFU/mL | 10–106 CFU/mL | [51] |
Voltammetric | Aptasensor | - | DPV | 80 CFU/mL | 5 × 102–5 × 107 CFU/mL | [34] |
Voltammetric | Aptasensor | Single wall carbon nanotube | CV–DPV | 1.7 × 10 CFU/mL | 1.7 × 10–1.1 × 107 CFU/mL | [52] |
Voltammetric | Immunoassay | SG-PEDOT-Au NPs | DPV | 3.4 × 10 CFU/mL | 7.8 × 10–7.8 × 106 CFU/mL | [53] |
Voltammetric | Genosensor | Graphene oxide-nickel ferrite-chitosan (GO/NiF/ch) film | DPV | 1 × 10−16 M | 10−6–10−16 M | [54] |
Voltammetric | Bare Indium Tin Oxide (ITO) based Immunosensor | Au NPs | DPV | 330 cells/mL | 1–106 cells/mL | [55] |
Voltammetric | Aptasensor | Cu-MOF/PANIAg NPs | DPV–EIS–CV | 2 CFU/mL | 2.1 × 101–2.1 × 107 CFU/mL | [56] |
Voltammetric | Dual signal amplification strategy based on double DNA hybridization | Polyaniline film and Au NPs | CV | 4 CFU/mL | 4 × 106–4 CFU/mL | [57] |
Voltammetric | Immunosensor | Reduced graphene oxide (rGO) | LSV–EIS | 4 CFU/mL | 4 × 108–4 CFU/mL | [58] |
Voltammetric | Sandwich type immunosensor | Cadmium Sulfide quantum dots in zeolitic imidazolate framework (CdS@ZIF-8) nanoparticles | DPV | 3 CFU/mL | 10–108 CFU/mL | [59] |
Voltammetric | Multiple amplification strategy via 3D DNA walker | AU NPs | CV–EIS–DPV | 7 CFU/mL | 10–104 CFU/mL | [60] |
Impedimetric | Interdigitated label free microelectrode | - | EIS | 7 cells/mL | 7.2 × 100–7.2 × 108 cells/mL | [6] |
Impedimetric | Immunosensor | Streptavidin coated magnetic beads (MBs) | EIS | 103 CFU/mL | 102–106 CFU/mL | [61] |
Impedimetric | Label free ITO based immunosensor | - | EIS | 1 CFU/mL | 10–106 CFU/mL | [62] |
Impedimetric | Lectin functionalized mixed self-assembled monolayer | 11- mercaptoundecanoic acid (MUA) and dithiothreitol (DTT) | EIS–CV | 75 cells/mL | 1 × 102–1 × 105 cells/mL | [29] |
Impedimetric | Immunosensor | Graphene wrapped copper (II) assisted cysteine hierarchical structure | EIS | 3.8 CFU/mL | 10–108 CFU/mL | [63] |
Impedimetric | Aptasensor based on Urease catalysis amplification strategy | Streptavidin modified magnetic nanoparticles, Gold NPs | EIS | 12 CFU/mL | 10–105 CFU/mL | [64] |
Impedimetric | self-assembled monolayer based immunoassay | - | EIS | 1 × 102 CFU/mL | 102–107 CFU/mL | [65] |
Impedimetric | Ab based magneto impedance sensor | Gold nanofilm | - | 50 CFU/mL | 50–500 CFU/mL | [66] |
Impedimetric | Multiple interdigitated electrode array | Gold thin film | IS | 39 CFU/mL | - | [67] |
Impedimetric | Microelectromechanical system (MEMS) biosensor based on Ab | Gold thin film | IS | 13 CFU/ML | - | [68] |
Impedimetric | Immunosensor | Magnetic nanobeads | – | 104.45 CFU/mL | 104–107 CFU/mL | [69] |
Impedimetric | Immunosensor | Cu3(BTC)2/PANI | EIS | 2 CFU/mL | 2-2 × 108 CFU/mL | [70] |
Impedimetric | Aptasensor | streptavidin modified MNPs, Au NPs | EIS | 10 CFU/mL | 10–104 CFU/mL | [71] |
Impedimetric | Immunosensor | Au NPs | IS | 100 CFU/mL | 300–105 CFU/mL | [26] |
Impedimetric | DNA sensor | 3-Aminipropyl trimethoxysilane (APTES) and GA | EIS | 0.5–25 pg/10 mL | 0.1 pg/10 mL | [72] |
Impedimetric | Immunosensor | Gold print | EIS | 3 × 10 CFU/mL | 10–108 CFU/mL | [73] |
Impedimetric | DNA biosensor | Graphene oxide Chitosan Hybrid nanocomposite | CV–EIS | 3.584 × 10−15 M | 1 × 10−14–1 × 10−8 M | [74] |
Amperometric | Hydrogen evolution reaction based immunosensor | Au NPs | CV–CA | 309 CFU/mL | 102–105 CFU/mL | [75] |
Amperometric | Personal Glucometer (PGM) Immunoassay | Au@Pt/SiO2 NPsand Fe3O4@SiO2 NPs | - | 1.83 × 102 CFU/mL | 3.5 × 102–3.5 × 108 CFU/mL | [76] |
Amperometric | Immunosensor | PPy/AuNP/MWCNT/Chi bionanocomposite | CV | 30 CFU/mL | 3 × 10–3 × 107 CFU/mL | [77] |
Amperometric | DNA biosensor | GOx–Thi–Au@SiO2 nanocomposites | CV–DPV | 0.01 nM | 0.02–50 nM/L | [78] |
Amperometric | Nonenzymatic immunoassay | Silica coated Fe3O4 magnetic nanoparticles and Au@Pt nanoparticles | CV | 4.5 × 102 CFU/mL | 4 × 103–4 × 108 CFU/mL | [79] |
Amperometric | Genosensor | Cd NPs | CV–EIS–DPV | 1.97 × 10−14 M | 1.94 × 10–13 and 2.01 × 10–14 M | [80] |
Amperometric | Screen printed interdigitated electrode | core–shell magnetic beads and Au NPs | CV | 52 CFU/mL | 102–106 CFU/mL | [81] |
Amperometric | DNA based sensor | 3-aminipropyl triethoxysilane (APTES) | CA | 0.8 fM | 1 fM–10 µM | [82] |
Amperometric | Immunosensor | MNPs and Au NPs | DPV | 10 CFU/mL | 101–106 CFU/mL | [83] |
Amperometric | Genosensor | Carboxylated graphene nanoflakes (Cx-Gnfs) | CV–EIS–CA | 10−17 M | 10−6–10−17 M | [84] |
Amperometric | Genosensor | Reduced graphene oxide (rGO) | CV–EIS–CA | 10−15 M | 10−6–10−17 M | [84] |
Amperometric | Aptasensor | Au NPs | CV | 10 CFU/mL | 10–109 CFU/mL | [85] |
Potentiometric | pH sensitive nanofibre | poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) hydrogel NFs | – | 102 CFU/mL | 102–106 CFU/mL | [86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razmi, N.; Hasanzadeh, M.; Willander, M.; Nur, O. Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. Biosensors 2020, 10, 54. https://doi.org/10.3390/bios10050054
Razmi N, Hasanzadeh M, Willander M, Nur O. Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. Biosensors. 2020; 10(5):54. https://doi.org/10.3390/bios10050054
Chicago/Turabian StyleRazmi, Nasrin, Mohammad Hasanzadeh, Magnus Willander, and Omer Nur. 2020. "Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview" Biosensors 10, no. 5: 54. https://doi.org/10.3390/bios10050054
APA StyleRazmi, N., Hasanzadeh, M., Willander, M., & Nur, O. (2020). Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. Biosensors, 10(5), 54. https://doi.org/10.3390/bios10050054